论文部分内容阅读
本文主要研究偏微分方程特征值和解的性态.偏微分方程来自于化学、物理和生物等科学领域,具有十分强烈的实际背景.它与数学中的其他很多分支密切相关,如微分几何,复分析,调和分析等,逐渐成为数学学科中最重要的研究领域之一.特征值与解的性态问题是偏微分方程中的基本问题.因此,对于偏微分方程中的特征值和解的性态的研究不但具有科学意义,而且具有潜在的应用价值.本文的主要内容安排如下: 第1章简述有关偏微分方程特征值和解的性态的研究背景及本文的主要工作. 第2章是预备知识.介绍了本文要用到的数学术语和数学工具. 第3章,我们讨论如下LaplacianRobin特征值问题{-Δψ=λψ,x∈Ω,(1)(a)ψ/(a)v+βψ=0,x∈(a)Ω,其中Ω(∈)Rn(n≥2)是有界区域,(a)Ω是Lipschitz的,v为边界上的单位外法向量以及0<β<+∞.本章的结论主要有两个:一个我们利用schwarz对称化方法和函数重排技巧得到了问题(1)的前两个特征值之比的一个上界估计.该估计在某个特定的限制条件之下是M.S.Ashbaugh和R.D.Benguria[4,6]证明的PPW猜测的一个推广;另一个是证明了问题(1)的第一特征函数满足Chiti型反向H(o)lder不等式. 在第4章中,我们研究如下k-Hessian算子的特征值问题{Sk(D2u)=λ(-u)k,x∈Ω,u<0,x∈Ω,(2)u=0,x∈(a)Ω,其中Ω是Rn中光滑有界凸区域.我们推导出问题(2)的主特征值λk1(Ω)=infu∈φk0(Ω){-∫ΩSk(D2u)udx/∫Ω|u|k+1dx}的变分公式并推导出相关的超定问题;其次,我们得到了所推导的超定问题的Serrin型对称性结果.