【摘 要】
:
近年来,随着实验设备和技术的发展,实验上发现了大量超出传统夸克模型的新结构,其中的一些被认为是奇特态强子的候选者。而且这其中有很多粒子的质量位于一对粲介子或底介子质量阈值附近,可能包含很大的强子分子态成分,是非常理想的强子分子态候选者。粲偶素能区的物理是粒子物理的一个重要研究领域,其产生和衰变过程与非微扰动力学密切相关,是深入理解强相互作用非微扰性质的重要途径。本文利用有效拉氏量方法和中间介子圈模
论文部分内容阅读
近年来,随着实验设备和技术的发展,实验上发现了大量超出传统夸克模型的新结构,其中的一些被认为是奇特态强子的候选者。而且这其中有很多粒子的质量位于一对粲介子或底介子质量阈值附近,可能包含很大的强子分子态成分,是非常理想的强子分子态候选者。粲偶素能区的物理是粒子物理的一个重要研究领域,其产生和衰变过程与非微扰动力学密切相关,是深入理解强相互作用非微扰性质的重要途径。本文利用有效拉氏量方法和中间介子圈模型研究了粲偶素和类粲偶素衰变中的耦合道效应。第一章,介绍了粒子物理发展史以及强子谱学。第二章,简要介绍本文所用的研究方法和理论模型,主要包括量子色动力学、有效场理论、有效拉氏量方法以及中间介子圈模型。第三章,通过中间介子圈模型研究了粲偶素态χ’c1和χ’c2的无粲衰变过程χ’c1→VV和χ’c2→VP,其中V和P分别表示轻矢量介子和赝标量介子。利用有效拉氏量方法,计算了该过程中间粲介子圈的贡献。对于χ’c1→VV过程,ρρ,ωω,K*0K*0,K*+K*-衰变道的衰变分宽度可以达到MeV的数量级,而φφ衰变道的衰变分宽度只能达到KeV数量级。对于χ’c2→VP过程,K*+K-+c.c.,K*0K0+c.c.衰变道的衰变分宽度相当大,而χ’c2→ρ+π-+c.c.的衰变分宽度远小于χ’c2→K*K+c.c.的衰变分宽度。这是因为在χ’c2→K*K+c.c.衰变道中,由u/d夸克和s夸克的质量差引起的U自旋破坏远大于在χ’c2→ρ+π-+c.c.衰变道中由u和d夸克质量差引起的同位旋破坏。我们的结果可以在BESIII未来的实验中得以检验。第四章,通过中间介子圈模型研究了X(3872)的无粲衰变过程。X(3872)的无粲衰变为研究X(3872)的性质和衰变机制提供了一个很好的平台。基于X(3872)为DD*束缚态的分子态性质,通过中间DD*+c.c.介子圈研究了 X(3872)的无粲衰变过程X(3872)→VV和X(3872)→VP,其中V表示轻矢量介子,P表示赝标量介子。我们讨论了三种情况,分别是纯中性组分(θ=0),同位旋单态(θ=π/4)和中性组分为主(θ=π/6)。其中,θ表示混合角,描述中性组分和带电组分相对比例。中性组分和带电组分相对比例影响X(3872)→VV/VP的衰变分宽度。当X(3872)是纯中性束缚态时,预测的X(3872)→VV的衰变分宽度约为几个KeV,而X(3872)→VP的衰变分宽度可以达到几十个KeV。当X(3872)中既有中性组分又有带电组分时,预测的X(3872)→VV的衰变分宽度约为几十个KeV,而X(3872)→VP的衰变分宽度可以达到几百个KeV。第五章,给出了文章总结和对未来工作的展望。
其他文献
二维过渡金属硫化物(Transition metal dichalcogenides,TMDCs)及其异质结构的直接带隙使其偶极跃迁与光相互作用增强,表现出强烈的激子共振等光电特性。具有极高空间分辨率和检测灵敏度的针尖增强光谱(Tip-enhanced spectroscopy,TES)技术是检测TMDCs及其异质结构的光谱特性的常用手段。二维TMDCs及其异质结构的高灵敏TES表征、高空间分辨成
本文首先介绍了伽玛暴的观测特征、基本理论和Swift伽玛暴的主要研究进展,然后重点介绍了本人在攻读硕士期间利用塌缩星模型和磁星模型对伽玛暴分类,前身星和中心引擎识别方面的研究工作。我们基于持续时间T90和塌缩星模型、对Swift卫星探测到的1115个长暴和110个短暴进行了重新分类。根据T90的信噪比(S/N)或峰值能量以及是否包含延展辐射等不同标准,将这些Swift伽玛暴划分为5个子样本。然后我
三重表征一直是中学化学学习中非常重要的思维能力之一,在化学教育领域有着很高的研究价值,而化学核心观念则是学习者对化学学科思想、观点、方法等的总体认识。很多专家学者对三重表征与化学核心观念的内涵进行了界定,也有较多的研究者针对提升中学生三重表征能力或者基于化学核心观念的建构在教学设计、培养策略等方面进行了较深入的研究,但是对于化学核心观念与三重表征能力之间关系的研究较少,仍需要进一步探寻。因此,本研
新时代背景下的中学化学实验教学迫切需要在传统实验教学模式的基础上变革教学方式。当前,真实实验与虚拟实验是教育界的研究热点之一,如何在课堂中组织并应用真实与虚拟实验教学值得我们进一步探讨,基于此,本研究者将从理论和实践两方面同时对这两种实验形式进行研究,设计实验方案,通过探查学生在不同实验形式下问题解决的行为来窥探两种实验形式的差异,并对未来化学实验教学提出策略建议。本研究首先梳理与述评真实与虚拟实
以甲胺铅碘(MAPbI3,MA=CH3NH3+)为代表的有机-无机卤化物钙钛矿半导体材料具有与太阳光相匹配的光学带隙,载流子寿命长,扩散距离长,光吸收系数大,显示出优异的光电物理性能及广泛的应用潜力。通过调控材料的光学带隙、优化器件接触界面等策略,基于此类半导体的钙钛矿太阳能电池(简称PSC)的光电转换效率(PCE)已达25.8%,是迄今为止研发速度最快的光伏技术。然而,传统P-i-N型钙钛矿电池
卤化物钙钛矿半导体材料光学、电学性能优异,获得科学研究者们的极大关注。到目前为止,单结卤化物钙钛矿太阳能电池的光电转化效率已经突破25%,接近硅基太阳能电池。然而,卤化物钙钛矿太阳能电池在走向商业化的道路上仍存在稳定性差的问题。卤化物钙钛矿多晶薄膜中的缺陷包括固有的点缺陷、晶界缺陷和表面缺陷。固有点缺陷包含空位、间隙和反位取代等。晶界和晶面上存在的悬空键,这导致了晶界和界面缺陷,包括配位不足的卤化
关于学生在学习过程中出现的错误是当前一个重要的研究问题,但关于“错误体验”的研究仍不够丰富。为发挥“错误”的教育价值,本文采用文献研究法、案例分析法、实验法、访谈法,提出了“错误体验”在高中物理教学中的设计策略。首先,通过课堂提问、作业批改、考试分析以及课下和学生面对面交流等方式,本文收集了学生在高中物理学习过程中出现的错误案例,并分析总结出学生在高中物理学习过程中出现的错误的类别及成因,通过向1
服装行业是我国重要经济产业之一,随着缝制装备自动化程度的不断提高,其中越来越多的服装生产企业开始采用全自动铺布机来代替人工铺布,不但减少了劳动力成本,也增加了铺布效率。目前国外的铺布设备铺布精度较高,铺布效率较快,自动化程度较高,仍然占据着我国缝前设备控制系统的高端市场,限制了我国的中小型服装生产企业的迅速发展。因此,为了减小与国外缝前设备的同类型产品差距,自主研发出性能良好的全自动铺布机控制系统
含氮杂环广泛存在于药物和生物活性化合物中,是生物活性产品和功能材料中的重要合成靶点。鉴于含氮杂环在有机合成领域的重要性,所以构建含氮杂环的新方法就显得尤为重要。2H-氮杂丙烯啶具有很强的反应活性,2H-氮杂丙烯啶的三元环是环张力最大的不饱和三元环,由于环张力的原因,组成三元环的三个键均可断裂。既能得到三元环的保留产物,也能得到开环产物,它通过亲核、亲电和自由基加成,经过不同的环加成、热异构化和催化
超高效液相色谱串联质谱(UHPLC-MS/MS)技术因其分离效果好、分析效率高,检测范围广等诸多优势现已在医药生产、食品安全和环境污染等各大领域得到了广泛的应用。在分析化学领域中,通常检测样品量少且待测组分含量低,同时受样品中共存干扰物的影响,UHPLC-MS/MS技术的灵敏度和准确度上还差强人意。为优化检测环境和校准误差,对样品溶液进行合适的样品前处理是十分必要的。稳定同位素标记衍生化技术(SI