论文部分内容阅读
鉴于现今常用的R22和R404A,R407C以及R410A等制冷工质将被逐渐淘汰同时作为替代工质的天然工质或者毒性较高、或者具有燃爆性亦或者循环压力高,同样被限制使用,因此,采取优势互补,将2种或2种以上的工质组合成混合工质作为替代制冷工质成为了重要研究方向。经研究得出,近共沸混合制冷工质R1234ze(E)/R152a(质量比40/60)环保性好,制冷性能优秀,具有优良的热物理性质和循环性能,是良好的替代制冷工质。而研究R1234ze(E)/R152a(质量比40/60)在水平管内的流动沸腾传热特性以及传热机理对探索提高该工质管内传热和优化蒸发器结构,以及将该混合工质推广应用具有重要价值,且目前尚未有该方面的研究。
本文搭建了混合工质在水平微肋管和光滑管内流动沸腾传热的实验系统,并对该实验系统的主要组成及工作原理进行了介绍,依据实验结果和理论分析,研究在小管径光滑管及常规管径微肋管内,R1234ze(E)/R152a(质量比40/60)的流动沸腾传热特性。得出以下主要结论:在小管径光滑管内,当质流密度增加时,在内径为6mm管内,传热系数先小幅度降低,之后开始逐渐升高,而在4mm内径管内,传热系数大幅增加;传热系数与热流密度具有明显的相关性,热流密度增大时,传热系数大幅增加,而与饱和温度关联性较小,传热系数随饱和温度的增加呈现出微量增加的趋势;传热系数随干度的增加先稳定在一定范围内不变之后降低。在常规管径微肋管内,随质流密度或热流密度的升高,传热系数呈现出与光滑管内(6mm内径下)几乎相似的变化趋势,同时得出热流密度越大,临界干度越小;随着饱和温度的增加,沸腾传热系数呈现出微量增加的趋势;随着工质的不断沸腾,干度上升,传热系数先微量增大之后降低,这有别于光滑管内,传热系数随干度增大先几乎保持不变而后降低的现象。
选取了与实验研究工况较为一致的现有的混合工质沸腾传热关联式进行预测,得出Jung等[67],Choi等[68]关联式在光滑管内预测精度较高,平均相对偏差和平均绝对偏差分别为0.58%,-0.92%和27.5%,23.8%。在微肋管内Wu等[94],Chamra等[91]关联式预测精度较高,平均相对偏差和平均绝对偏差分别为3.77%,8.72%和10.39%,25.79%。最后得出,现有的用于预测混合工质光滑管内沸腾传热的关联式仅适于预测特定工质,通用性不强,需要开发新的预测关联式用于预测R1234ze(E)/R152a(质量比40/60);而在微肋管内,Wu等[94]可用于对该混合工质的流动沸腾传热系数进行预测。
本文搭建了混合工质在水平微肋管和光滑管内流动沸腾传热的实验系统,并对该实验系统的主要组成及工作原理进行了介绍,依据实验结果和理论分析,研究在小管径光滑管及常规管径微肋管内,R1234ze(E)/R152a(质量比40/60)的流动沸腾传热特性。得出以下主要结论:在小管径光滑管内,当质流密度增加时,在内径为6mm管内,传热系数先小幅度降低,之后开始逐渐升高,而在4mm内径管内,传热系数大幅增加;传热系数与热流密度具有明显的相关性,热流密度增大时,传热系数大幅增加,而与饱和温度关联性较小,传热系数随饱和温度的增加呈现出微量增加的趋势;传热系数随干度的增加先稳定在一定范围内不变之后降低。在常规管径微肋管内,随质流密度或热流密度的升高,传热系数呈现出与光滑管内(6mm内径下)几乎相似的变化趋势,同时得出热流密度越大,临界干度越小;随着饱和温度的增加,沸腾传热系数呈现出微量增加的趋势;随着工质的不断沸腾,干度上升,传热系数先微量增大之后降低,这有别于光滑管内,传热系数随干度增大先几乎保持不变而后降低的现象。
选取了与实验研究工况较为一致的现有的混合工质沸腾传热关联式进行预测,得出Jung等[67],Choi等[68]关联式在光滑管内预测精度较高,平均相对偏差和平均绝对偏差分别为0.58%,-0.92%和27.5%,23.8%。在微肋管内Wu等[94],Chamra等[91]关联式预测精度较高,平均相对偏差和平均绝对偏差分别为3.77%,8.72%和10.39%,25.79%。最后得出,现有的用于预测混合工质光滑管内沸腾传热的关联式仅适于预测特定工质,通用性不强,需要开发新的预测关联式用于预测R1234ze(E)/R152a(质量比40/60);而在微肋管内,Wu等[94]可用于对该混合工质的流动沸腾传热系数进行预测。