论文部分内容阅读
                            
                            集成岸桥分派的在线泊位分配问题
【机 构】
                                :
                                杭州电子科技大学
                            【出 处】
                                :
                                杭州电子科技大学
                            【发表日期】
                                :
                                2017年期
                            其他文献
        
 
                            
                                    本论文主要研究rs(n)的同余性质,与Weil估计有关的一个等式,得到的主要结果如下:  
 (一)设s,n都是正整数,定义rs(n)=#{(x1,x2,…,xs)|x21+x22+…+x2s=n,xi∈Z}。  
 2005                                
                                
                            
                                    近几十年来,由于分数微分方程在科学的各个领域中的应用,分数微分方程已发展成为一个重要的课题,对分数微分方程的研究受到了人们的广泛关注,它有很强的实际意义,本文主要研究了两                                
                                
                            
                                    当(m,n)=1,m,n∈N*时,形如mx(x+1)(x+2)(x+3)=ny(y+1)(y+2)(y+3)的不定方程已有不少的研究工作.  
 本文运用递归数列,同余式以及平方剩余的方法证明了如下的两个定理:                                  
                                
                            
                                    随着网络技术的发展,信息安全变得越来越重要,存取控制技术是信息安全领域中的重要技术之一,近些年来受到国内外同行学者的广泛关注.本文研究单模数线性同余方程组理论与多模                                
                                
                            
                                    小波分析是一门正在迅速发展的新兴学科,目前,它在实际中得到了广泛的应用。研究小波的新理论、新方法以及新应用具有重要的理论意义和实用价值。本文旨在完善小波的基本理论                                
                                
                            
                                    芬兰数学家R.Nevanlinna在上世纪二十年代引进了复平面中亚纯函数的特征函数,发表了重要的Nevanlinna理论([23]).对于研究复平面函数的性质有巨大的影响,这是二十世纪数学史上最                                
                                
                            
                                    上世纪20年代,芬兰数学家Rolf Nevanlinna.建立了的该世纪最为重要的数学理论之_,复平面C上的亚纯函数的值分布理论,即通常因纪念他而被称之为的Nevanlinna理论.该理论主要由                                
                                
                            
                                    在本文中我们将考虑由一般鞅驱动的倒向随机Volterra积分方程(以下简记为BSVIEs)。倒向随机积分方程是倒向随机微分方程的自然发展。倒向随机微分方程从1990年诞生至今已有20                                
                                
                            
                                    作为α-对称环的推广,首先引入了α-GWS环,并研究了α-GWS环的基本性质,说明了α-GWS环是α-对称环的真推广.得到了α-GWS环与GWS环之间的关系,讨论了α-GWS环的平凡扩张与Dorroh