【摘 要】
:
整数的分布在初等数论中具有重要的意义,许多专家学者对整数的分布都进行了研究,如张文鹏[2]研究了整数及其逆的均值分布,徐哲峰[3]研究了整数及其m次幂模n剩余的差的均值问
论文部分内容阅读
整数的分布在初等数论中具有重要的意义,许多专家学者对整数的分布都进行了研究,如张文鹏[2]研究了整数及其逆的均值分布,徐哲峰[3]研究了整数及其m次幂模n剩余的差的均值问题.本文主要运用了数论中许多经典内容及初等技巧,研究了整数幂和广义D.H.Lehmer数的相关均值问题.具体来说,研究了以下两种内容:1.设p为奇素数,k为非负整数,令(am)p表示满足1≤b≤p及6≡am(mod p)的整数.当正整数l,m满足z(?)m(mod(p一1))时,研究了形如的均值,并且给出了渐近公式.2.设入为满足入λ(0,1]的任意实数,令n>[1/λ]为奇数且m≥2为整数.则对任意的非负整数k,研究了当整数a为广义D.H.Lehmer数时,形如的均值,并且给出渐近公式.
其他文献
随着基于光子回波的任意信号产生技术的不断成熟,对于光子回波的研究也变得日益迫切。光子回波模型的不断发展使得科研者有更多的方式,更多的参量去精确控制我们所产生的光子
量子Fisher信息作为Fisher信息的拓展,在量子估计理论、量子信息理论和量子度量学中起着关键作用。它可以根据Cramer - Rao不等式,得到参数估计精度的极限,而最基本的参数估
杨-巴克斯特方程(简称YBE)为解决量子统计问题、量子多体问题等方面的研究提供了强有力的理论基础,推动了物理学的发展,并且取得了极大的进展。特别是在此基础上,由德林费尔
分子势能函数作为原子分子反应动力学,原子分子碰撞等学科的基础,在描述分子性质方面起着举足轻重的的作用。以最简单的双原子分子体系为例,它的势能仅是原子核间距(R)的函数
轮廓检测是高级视觉任务的重要基础,大量的生物学研究表明存在一种环绕抑制机制可以帮助人眼检测轮廓。虽然大量的轮廓检测算法已经被提出,但是高精度高效率的轮廓检测仍是一大难题。目前存在两个难点:一是检测轮廓缺失,二是纹理边缘冗余。针对这两个问题,本文基于生物视觉机制提出两种改进的基于环绕抑制的轮廓检测算法。传统的环绕抑制算法检测的轮廓依然存在大量冗余的纹理边缘,检测的轮廓仍不够完整。由于超像素边界对轮廓
由于钾储量丰富、价格低廉和氧化还原电位较低等原因,钾离子电池被认为是未来发展高性能电化学能量存储系统的重要选择。其中,有机电极材料因具有绿色环保、廉价易得、结构多样、分子水平上可设计和理论比容量高等优点逐渐被更多的研究者关注。但该材料存在导电性差和在电解液中易溶解等问题,导致倍率性能和循环性能较差,限制其未来发展。本论文围绕有机羰基化合物电极材料,研究内容主要包括以下两个方面:(1)通过简单的酸碱
分数阶积分微分理论是数学分析的一个重要的分支,是专门研究任意阶积分和微分的数学性质及其应用的重要领域。分数阶微分方程可以应用到记忆材料、粘弹性力学、地震分析以及
本文主要讨论了一类抽象形式的非线性偏微分方程Cauchy问题解的惟一连续性.我们知道,惟一连续性是可积系统的重要性质之一,而初值问题中解的性质与初值的光滑性密切相关.非线
完全单调性和对数完全单调性是Gamma函数及其相关函数的两个重要性质,它们在数论,概率论,微分方程,定积分,黎曼zeta函数,物理等领域都起着十分重要的作用.正因为如此,越来越
随着智能化工业技术的发展,传统人工及单一机械臂的物料袋卸垛方式无法满足现代化生产的需求,具有视觉功能的机器人应用率越来越高,双目机器视觉技术以反应灵活、精度较高等特点广泛应用于工件识别和定位、三维立体重建及无人驾驶等领域。本文立足于现代物流领域实现柔性物料袋精准、灵活定位的卸垛需求,针对柔性物料袋特点,依托图像处理理论,利用特征提取、立体匹配及三维重建等技术,展开基于双目视觉的物料袋空间定位方法研