具有分形为衰减项的波动方程在局部一致空间上的吸引子

来源 :辽宁师范大学 | 被引量 : 0次 | 上传用户:acup
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文在局部一致空间上研究了具有临界增长率的非线性分形衰减波动方程解的动力行为:(此处为公式省略)  其中 N≥3;α,ω为给定正常数;(-Δ)、为分形衰减项,其参数θ∈ G(0,1];外力项f∈L2n(Rn);u(x,t):RN× R+→ R为未知函数;非线性项φ∈C1(R,R),且具有临界增长率1+4θ/{N-2θ}.  近年来,众多学者在有界区域上分析了此类方程的适定性和长时间动力行为,并且在许多文献中研究了方程整体吸引子、指数吸引子的存在性以及吸引子的分形维数.然而,在无界区域上,由于嵌入公式的非紧性,我们不能直接应用紧吸收集的存在性来证明吸引子的存在性.同时,一般的Sobolev空间不包含行波解和常数解.为了让这些特殊解包含在吸引子里,一些学者想到了有界的一致连续函数空间和加权空间,但是加权空间忽略了离坐标原点较远处的解的一些特征,并且缺乏类似于Sobolev嵌入公式这样有效的工具.后来,一些学者通过应用局部一致空间解决了这一问题.局部一致空间既有合适的嵌套性质,也有紧嵌入公式,还包含常值函数,但由于嵌入公式的某些差异,在局部一致空间中我们不能直接应用有界区域里的处理办法,必须采用完全不同的方法.Yang M.H.和Sun C.Y.在局部一致空间中研究了无穷领域上强衰减波动方程整体的适定性、解的渐近正则性和吸引子的存在性.  本文的目的是把上述结果推广到无穷领域上具有分形衰减项和超立方增长率的半线性波动方程上.近几年,分数阶微分方程的动力性质逐渐成为数学家和工程师们的热门课题.分数阶微积分理论不仅为描述记忆性和遗传性提供了完美的工具,还被广泛应用于物理和工程领域,如流体力学、生物学、化学、材料学等等.具有分形阻尼的波动方程是在波通过有损介质时出现的,如分形岩石层,人体组织,不同生物医学材料.并且据我所知,当非线性项具有立方增长率时,适定性以及吸引子的存在性问题可以像θ=0的情况一样得到.然而,对于超立方增长率还没有得到相应的结果.  本文在证明整体适定性的过程中首先证明渐近正则性,然后证明较强的吸引性,(H1u(Rn)×H21u(RN),H2lu(RN)×H1u(Rn))-吸引子和(H11u(RN)×L2lu(RN),H-ρ(RN)×Hθρ(RN)-吸引子的存在性.
其他文献
从全球证券投资基金发展的趋势来看,目前的主流形态是公司型基金,而我国的《证券投资基金法》虽然为公司型基金预留了制度空间,但是目前我国证券投资基金仍然只有契约型基金
令R是一个环,A,C为左R-模,f:A→C是一个满同态.对任一自然数n,我们称f是n-可裂的,若对所有n-生成的左R-模M,f都是M-纯的;左R-模P被称为n-纯投射的,若每个到P上的纯满同态都是n-可裂
该文讨论了由金融控制问题中提出的常微分自由边值问题(NFBV)解存在性和数值计算方法.在简述了与问题有关的发展动态后,首先我们证明了NFBV问题可以转化成等价的带约束条件的
最近,Le Bruyn和Ginzburg分别引入了项链李代数([1],[2]),它是定义在箭图上的一种无限维李代数,在非交换几何研究中起了重要作用.目前对项链李代数的结构还没有太多的研究.该
本文主要讨论了几类奇摄动问题的角层现象,文章的结构安排如下:  第一章主要说明了奇摄动问题的研究概况,介绍了本文的主要工作和创新之处,且陈述了本文用到的基本概念和主
该文讨论了集值映射向量优化理论的若干问题.在线性空间中定义了广义次似凸集值映射的概念,并讨论了它的一些重要性质.在广义次似凸性假设下,证明了Gordan-Farkas型的择一性
本文对经验Bayes和客观Bayes推断中若干问题进行了研究.具体地我们研究了多元模型中参数的Bayes估计、经验Bayes估计和同变估计的构造及其它们的性质.而且在更为一般的协方差
该文研究了某些高阶线性微分方程解的增长性问题.其中第二章研究了一类高阶整函数系数微分方程解的增长性的进一步结果,当存在某个系数对方程的解的性质起主要支配作用时,得
破产理论的研究一直是风险理论的核心研究内容,该文应用更新理论和鞅方法重点研究了与破产有关的问题,如描述保险公司安全状况的终极破产概率,和刻画保险公司破产严重程度的
李代数和约当代数是两类重要的非结合代数.在李代数上,Rota-Baxter算子与经典Yang-Baxter方程的解是等价的.本文主要讨论除三维交换李代数、Heisenberg李代数、s l(2,C)之外