基于时空特征的伪造人脸检测算法研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:davidchen19
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度学习在给计算机视觉领域带来革新的同时,也对社会安全产生着威胁。尤其是近年来由人脸交换技术制作的伪造人脸视频,不仅侵犯了个人隐私还影响了社会安全。目前大量的研究开始专注于检测这类伪造人脸视频,但在检测模型的设计阶段普遍缺乏针对动态瑕疵、纹理瑕疵等伪造人脸特殊性的考虑,导致现有模型难以有效地融合人脸视频的空间与时间特征。另外,缺乏足够的约束会导致模型学习到冗余信息,进而使伪造检测任务上特征的表达精度降低。鉴于此,本文面对高精度高泛化的伪造人脸检测,提出了以下两种方案:(1)基于NASNetMobile骨干模型,本文针对现有的CNN-LSTM架构的伪造人脸时空检测方法的缺陷,提出了面向时空的多任务度量学习检测方法。首先将篡改区域预测任务引入骨干模型的优化目标,与分类检测形成多任务学习。同时引入了基于对比损失的约束,最大化地提取真假人脸的差异特征。在保证空域特征精度的条件下,利用长短期记忆网络作为时域特征提取器,实现了高精度的伪造人脸检测。(2)针对人脸伪造检测模型不可避免地学习语义信息的问题,通过引入数字取证领域知识,设计了基于时空融合的伪造人脸检测方法。首先利用可学习滤波与空域富模型滤波,提取细微噪声特征并抑制图像语义内容。同时,为了进一步增强对人脸视频的时间信息的捕捉能力,利用局部编码网络与双向长短记忆模型提取图像内部的自一致特征,最终引入额外的时域特征来辅助进行检测。本文所提出的两种方案在多种最先进的大规模伪造人脸数据集Faceforensics++、Celeb-DF、Deeperforensic以及DFDC-P上进行了充分的实验与分析,取得了较好的平均精度,并且通过消融实验证明了不同组件的有效性。本文结果表明所提出的方法对伪造人脸检测带来了积极的作用,检测精度超越了多个现有最优方案,在跨库检测上也取得了较好的效果。
其他文献
正确判断脑部神经胶质瘤基因型是突变还是野生类型,将有助于医生做出正确的预后治疗。针对活体组织检查会对患者造成一定的伤害、人工观察核磁共振图像准确率低的情况,本文借助计算机辅助的方式对神经胶质瘤进行判断。本文以神经胶质瘤分型为目的,多序列核磁共振图像为数据基础,深度学习为方法,从预处理到肿瘤分型分别提出了不同的深度学习网络结构。本文的创新性工作包括以下内容:(1)针对预处理时,3D Slicer等软
第五代(The Fifth Generation,5G)通信系统采用更先进的通信技术对5G信道建模提出了更高的要求。在无线信道建模的研究领域中,最大的挑战是建立有效且准确的信道模型,能够模拟影响无线通信系统性能分析的所有传播特性。车对车(Vehicle-to-Vehicle,V2V)信道建模作为5G信道建模研究的热点之一,越来越受到研究人员的关注。在V2V通信场景中,发送端(Transmitter
随着物联网的迅速发展,射频能量采集技术的应用范围也逐步扩大。作为射频能量采集系统中的能量接收和转换器件,整流天线在系统中发挥着重要的作用。整流天线的一个研究方向是在有限的功率密度环境下尽可能地吸收更多能量以提高能量转换效率。实际的能量采集过程中,天线的辐射方向、极化方式以及与整流电路的合并方式等都制约着能量采集系统的接收能力。本文设计了极化可重构全向圆极化天线,通过切换极化方式在辐射范围内提高天线
随着图像处理技术的发展和嵌入式硬件的进步,基于机器视觉的无人机着陆已经成为非常热门的研究领域。无人机视觉着陆控制是无人机飞行控制系统的关键技术之一,它对无人机着陆的稳定性,准确性,可靠性和实时性能有很高的要求。基于视觉的着陆系统是学者们研究的热点,与传统的系统相比,该系统具有成本低、抗干扰能力强的优点。实现无人机视觉着陆的基本要求是获取无人机所处环境的信息并通过该信息准确估计无人机的位姿姿态,其中
由于光照、色调等因素的干扰,采集自不同摄像头的同一个行人的图像通常存在视觉差异,而不同行人的图像却可能很相似,因此往往很难用线性模型来区分它们。我们通过对传统的只能用于单视图场景的协同表示分类器(CRC)进行跨视图非线性扩展,提出跨视图核协同表示分类(CV-KCRC)框架并将之应用于行人重识别。CV-KCRC不仅能增强CRC处理跨视图异类样本线性难分问题的能力,而且还能提升了模型的判别力和鲁棒性。
近年来,物联网(Internet of Things,Io T)技术发展迅速,其应用领域已经扩展到智能家居、智能医疗、农场监测和智慧交通等方面。由于无线通信环境的开放性,安全与隐私问题是物联网发展的关键因素。认证方案是实现物联网安全的第一道防线,但是单一认证方案容易造成传感器节点认证的延迟、网络资源占用问题,而群组认证方案能够提高网关对节点的认证效率,适合节点数目繁多的物联网环境。此外,若节点以真
信息隐藏是保证网络通信数据安全的重要手段之一,发送方可以通过密钥和特定算法将秘密信息嵌入到载体中,再由接收方通过密钥和特定算法提取出秘密信息。其中,图像因其易获取性和多样性,成为目前使用最为广泛的隐藏载体之一。信息隐藏技术不仅能够保证秘密信息本身的安全,还能保证载密图像进行可靠的传输,因而受到国内外学者的广泛关注及深入研究。传统自适应图像隐写算法对于待改变像素位置选择大多依赖人为经验设计,需要耗费
深度神经网络在图像分类、目标识别等任务中已经取得了显著效果,然而训练集(源域)和测试集(目标域)的数据分布不一致会导致模型的性能大幅下降。领域自适应在解决训练数据与测试数据分布不同方面具有重要的现实意义。本文重点研究在目标域无标签的情况下提取领域不变特征,提高模型对于目标域的分类准确率。现有的域适应方法忽略了目标样本的分类信息,在特征提取过程中生成器往往在分类边界产生有分歧的特征从而影响了模型分类
心理学研究表明图像刺激会唤起人类的不同情感响应,图像情感分类任务旨在运用机器学习模型自动预测观测者看到图像时的情感反映,构建图像情感自动预测模型在社交网络、互动广告推广等场景中具有重要的应用价值。现有研究表明相比于整幅图像,图像的某些局部区域会更易引起人类情感响应,而注意力机制则可以有效学习图像中与任务关联的关键区域。为此,本论文提出了联合视觉显著性的图像情感分类网络模型。具体工作包括两个方面:(
随着社会的快速发展,微信、淘宝、微博等社交媒体用户数数以亿计,通过社交媒体可以发表心情、感想和对各类事件的看法等,并由此产生了大量的社交文本数据。通过对社交文本中的情感信息进行情感倾向挖掘,可以很直观的反映出用户个人的情感倾向和社会舆论问题。在政府舆论监督、企业管理决策、个人情感管理等方面都发挥着重要的作用。目前,针对传统文本情感倾向的分析研究已经比较成熟,但社交短文本的情感分析研究依然还比较落后