论文部分内容阅读
密度峰值聚类(DPC)算法是一种新型的聚类算法,具有调节参数少、无需迭代求解、能够发现非球形簇等优点;但也存在截断距离无法自动调节、聚类中心需要人工指定等缺点。针对上述问题,提出了一种自适应DPC(ADPC)算法,实现了基于基尼系数的自适应截断距离调节,并建立了一种聚类中心的自动获取策略。首先,综合考虑局部密度和相对距离两种因素以重新定义簇中心权值计算公式;然后,基于基尼系数建立自适应截断距离调节方法;最后,根据决策图和簇中心权值排序图提出自动选取聚类中心的策略。仿真实验结果表明,ADPC算法可以根