论文部分内容阅读
本书主要介绍了如何驾驭大数据浪潮,并详细地介绍了什么是大数据,大数据为什么重要,以及如何应用大数据。本书还从具体实用的角度,介绍了用于分析和操作大数据的工具、技术和方法;以及人才和企业文化的角度,介绍了如何使分析专家、分析团队以及所需的分析原则更加高效,如何通过分析创新中心使得分析更加有创造力,以及如何改变分析文化。《驾驭大数据》适于所有对数据、数据挖掘、数据分析感兴趣的技术人员和决策者阅读。
定价:¥49.00
作者:Bill Franks著,黄海,车皓阳,王悦等译
出版社:人民邮电出版社
3.1 汽车保险业:车载信息服务数据的价值
车载信息服务在汽车保险行业中的关注度非常高。车载信息服务是通过汽车内置的传感器和黑盒来收集和掌握车辆的相关信息。我们可以配置不同的方案,使用黑盒来监测所有的汽车数据。我们可以监测车速、行驶里程,以及汽车是否安装了紧急制动系统。车载信息服务数据能够帮助保险公司更好地理解客户的风险等级,并设置合理的保险费率。如果彻底地忽略隐私问题,车载信息服务装置可以跟踪到汽车去过的所有地点、何时到达的、以多快的速度、使用了汽车的哪些功能等。
车载信息服务可以潜在地降低司机的保险费率,并提升保险公司的收益。它是怎样做到在降低费率的同时提升收益呢?答案就在于保险公司要根据风险评估来进行保险定价。传统的风险评估方法使用的是年龄、人口统计特征以及个人意外伤害历史这类数据,它们只能提供高层次的概要信息。对于驾驶记录没有任何问题的车主,传统方法根本没办法把他们和附近的其他人区分开。
保险公司要未雨绸缪,并做好最坏的打算。它们要弄清楚哪些人放在哪个风险范围上是最安全的,一般情况下,它们会先假定这些人的风险是位于该风险范围较高的一端。汽车保险公司对车主的行为习惯和实际风险了解得越详细,风险范围就会越窄,同时认定范围内出现需要提升费率的最坏情况的可能性就会比较小。这就是为什么可以同时降低保险费率和提升收益的原因。如果保险公司认为投保个体的风险较好,那么保险公司将可以更好地了解每个人的风险状况,预计必须支出的保费就不会发生太大变化。
全球很多国家的保险公司都在使用车载信息服务,而且数量越来越多。早期项目的注意力放在从汽车上收集最少的信息,例如,它们并不关心汽车去过什么地方。早期项目跟踪的是汽车开了多远、什么时候开的车、是否超速和是否使用了大量的紧急制动。这些信息都是非常基本的信息,不牵涉到个人隐私,是故意设计成这样的。因为避免了收集高度敏感的信息,所以才会被广泛地接受。这个道理也同样适用于商业车队。如果保险公司了解到公司车队更多的用车情况,那么它为公司车队确定保险费率也就更容易。
车载信息服务数据最初是作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险。再过一段时间,等到许多交通工具都安装了车载信息服务装置后,那时保险业以外的行业也可以使用车载信息服务数据了。现在,公共汽车已经有了车载计算机管理系统,但是车载信息服务设备可以将其提升到一个新的层次。车载信息服务数据还有一些有趣的应用,我们来看一下这些应用。使用车载信息服务数据
如果车载信息服务真的开始大规模应用,一定会出现许多令人兴奋的分析应用。想象一下,以后全国有数以千万计的汽车都安装了车载信息服务装置,那时候第三方研究公司会以匿名的方式为客户收集非常详细的车载通信数据。与为保险收集的有限数据不同,这时数据收集是以分钟或秒为频率,且收集内容包括但不限于速度、位置、方向和其他有用的信息。
无论交通是否阻塞,无论什么日期,这种数据反馈方式都会提供大量的车载通信信息。研究人员可以知道每辆车在道路上的行驶速度,他们还可以知道车流开始的时间、结束的时间,以及持续的时间。这种真实的交通流信息视图将会多么令人惊讶!试想这会对交通阻塞和道路系统规划的研究产生多么大的影响!
如果研究人员能够掌握大量汽车在每一个高峰时段、每一天、每个城市中的动向,他们就能非常清晰地判断出车流产生的前因后果。此外,还能查明下述问题的答案。
定价:¥49.00
作者:Bill Franks著,黄海,车皓阳,王悦等译
出版社:人民邮电出版社
3.1 汽车保险业:车载信息服务数据的价值
车载信息服务在汽车保险行业中的关注度非常高。车载信息服务是通过汽车内置的传感器和黑盒来收集和掌握车辆的相关信息。我们可以配置不同的方案,使用黑盒来监测所有的汽车数据。我们可以监测车速、行驶里程,以及汽车是否安装了紧急制动系统。车载信息服务数据能够帮助保险公司更好地理解客户的风险等级,并设置合理的保险费率。如果彻底地忽略隐私问题,车载信息服务装置可以跟踪到汽车去过的所有地点、何时到达的、以多快的速度、使用了汽车的哪些功能等。
车载信息服务可以潜在地降低司机的保险费率,并提升保险公司的收益。它是怎样做到在降低费率的同时提升收益呢?答案就在于保险公司要根据风险评估来进行保险定价。传统的风险评估方法使用的是年龄、人口统计特征以及个人意外伤害历史这类数据,它们只能提供高层次的概要信息。对于驾驶记录没有任何问题的车主,传统方法根本没办法把他们和附近的其他人区分开。
保险公司要未雨绸缪,并做好最坏的打算。它们要弄清楚哪些人放在哪个风险范围上是最安全的,一般情况下,它们会先假定这些人的风险是位于该风险范围较高的一端。汽车保险公司对车主的行为习惯和实际风险了解得越详细,风险范围就会越窄,同时认定范围内出现需要提升费率的最坏情况的可能性就会比较小。这就是为什么可以同时降低保险费率和提升收益的原因。如果保险公司认为投保个体的风险较好,那么保险公司将可以更好地了解每个人的风险状况,预计必须支出的保费就不会发生太大变化。
全球很多国家的保险公司都在使用车载信息服务,而且数量越来越多。早期项目的注意力放在从汽车上收集最少的信息,例如,它们并不关心汽车去过什么地方。早期项目跟踪的是汽车开了多远、什么时候开的车、是否超速和是否使用了大量的紧急制动。这些信息都是非常基本的信息,不牵涉到个人隐私,是故意设计成这样的。因为避免了收集高度敏感的信息,所以才会被广泛地接受。这个道理也同样适用于商业车队。如果保险公司了解到公司车队更多的用车情况,那么它为公司车队确定保险费率也就更容易。
车载信息服务数据最初是作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险。再过一段时间,等到许多交通工具都安装了车载信息服务装置后,那时保险业以外的行业也可以使用车载信息服务数据了。现在,公共汽车已经有了车载计算机管理系统,但是车载信息服务设备可以将其提升到一个新的层次。车载信息服务数据还有一些有趣的应用,我们来看一下这些应用。使用车载信息服务数据
如果车载信息服务真的开始大规模应用,一定会出现许多令人兴奋的分析应用。想象一下,以后全国有数以千万计的汽车都安装了车载信息服务装置,那时候第三方研究公司会以匿名的方式为客户收集非常详细的车载通信数据。与为保险收集的有限数据不同,这时数据收集是以分钟或秒为频率,且收集内容包括但不限于速度、位置、方向和其他有用的信息。
无论交通是否阻塞,无论什么日期,这种数据反馈方式都会提供大量的车载通信信息。研究人员可以知道每辆车在道路上的行驶速度,他们还可以知道车流开始的时间、结束的时间,以及持续的时间。这种真实的交通流信息视图将会多么令人惊讶!试想这会对交通阻塞和道路系统规划的研究产生多么大的影响!
如果研究人员能够掌握大量汽车在每一个高峰时段、每一天、每个城市中的动向,他们就能非常清晰地判断出车流产生的前因后果。此外,还能查明下述问题的答案。