论文部分内容阅读
【摘要】培养学生的思维能力是现代学校教学的一项基本任务,本文作者就小学数学应用题对学生思维能力的培养提出了自己的看法,以供商讨。
【关键词】能力;培养
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。
能力是什么?能力是与活动联系在一起的,从事任何活动都必须具备相应的能力。每一种活动都对人的心理过程、分析的能力、反应的速度、个性的特征提出某些要求。能力就是人的这些心理特征,符合于相应活动的要求,并且是顺利地、高质量地完成这种活动的条件。通过多年的教学经验,认为在改革教材的基础上,对应用题的教学,突出地抓住了数学能力的培养。在培养能力方面,主要有几个特点:
一、抓住特殊能力——数学能力的培养
近十年来,许多教师对教学进行改革,重视能力的培养,注意培养学生的观察能力、思维能力、想象能力、记忆能力等。我觉得这些能力属于一般能力。而学生的学习活动是分学科进行的,不同学科还有不同的特殊能力。如语文能力、数学能力、生物能力、音乐能力等等。我们要使培养能力的教学改革深入下去,取得更好的成效,就不能停留在培养一般能力,而要深入到学科,根据学科本身的特点,研究如何培养学科的能力。这是培养能力如何深入的一个重要问题。我注重抓住特殊能力——数学能力的培养。我根据小学生智力发展的特点,主要培养掌握数学问题结构的能力、逻辑思维能力,思维的灵活性和数学概括能力。以掌握数学问题结构的能力为例。什么叫数学问题结构?通常人们在解答一个问题前,必须先了解这个问题,分析这个问题,找出问题的已知条件和要求,这就要进行分析、综合研究条件之间的关系,条件与问题之间的关系,然后把这些成分综合成一个整体,抓住问题中具有本质意义的那些关系。这就是抓住了数学问题的结构。“能力强的学生拿到一道数学题时,一眼就看出了问题的结构,就能把已知条件联系起来,而数学能力平常的学生遇到一类新问题时,一般说来,他们只是感知问题孤立的数学成分,并不理解这个问题。对于平常的学生来说,特别重要的是要能通过分析和综合过程把问题的各种成分联系起来。”(克鲁切茨基《中小学生数学能力心理学》252、254页)我在教一步应用题时,就着重地抓了数学问题结构的训练。如画线段图的训练,补充问题与条件的训练,题意不变改变叙述方法的训练,自编应用题的训练,根据问题说出所需条件的训练,对比训练等。在讲两步应用题时,重点上了两步应用题的“结构课”,同时进行变直接条件为间接条件,变换问法,让学生扩题、缩题、拆题,看问题要条件等四个方面的训练。讲多步复杂应用题时,又进行了多步应用题的“发散思维课”及相应的各种训练。通过一系列的教学和训练,使每个学生都掌握了应用题结构的能力。
二、认真审题,揭示联系,培养思维的流畅性。
学生能否正确的解答应用题,首先是审题,我注意从读题入手,引导学生认真审题。具体做法是:
1、熟悉性的读,分清题中的情节、条件和问题。读完后,不看书想一想,用自己的话说一说题目中的意思;
2、批划性的读,即用自己喜欢的、不同的符号将题中表达情节和数量关系的词语划下来,帮助理解题意,疑难之处也应标出来;
3、推理性的读,以弄清条件与条件,问题与问题之间的联系,寻求解题的基本途径,明确解题思路的指向。
三、 重视解题思路的训练
应用题之所以难学,问题本身一般比较复杂是一个原因,但从教学法来说,更重要的是解题思路(思维过程的顺序、步骤与方法)缺乏应有的训练,使许多学生感到问题无从下手,不知道怎样去想。对于这一点,我们只要把它同计算题作一比较,就清楚了。如做计算题时,学生对运算法则、运算顺序和步骤,都是清清楚楚的。学生的思维过程同运算顺序是一致的。计算的每一步都在式子里反映出来,看得见、摸得着,学生计算得对与错一目了然。计算题通过训练学生容易掌握。而解应用题就不同了,学生要了解题意,分析条件与条件之间,条件与问题之间的各种数量关系,要通过分析、综合,找到解题的途径和方法。从审题到列出式子,思维过程少则也有几步,都是用内部言语的形式进行的。这种用内部言语进行的思维过程,教师既难以知道学生的思维是否合理、正确,有无错误,更难以进行有针对性地训练。对于这样的问题,我根据学生智力活动的形成是从外部言语到内部言语这个特点,进行思维能力的教学。
四、合理想象,多向探求,培养思维的灵活性。
为了培养学生思维的灵活性,我注意引导学生根据不同条件,展开合理的想象、推理。例如:从“一本书80页,张明第一天看了全书的40%,第二天看了全书的30%”三个条件中,可以想象出什么结果。经过思考后学生提出:
1、从第一个条件和第二个条件可知张明第一天读书的页数;
2、从第一条件和第三个条件中可知张明第二天读的页数;
3、从第二个条件和第三个条件中可知:(1)两天共看56页,(2)还剩24页没看;(3)第一天比第二天多看8页;(4)第一天看的是第二天的 1 。
4、从以上三个条件可知:
(1)两天共看45页,
(2)还剩24页没看;
(3)第一天比第二天多看8页;
(4)两天看的页数的比是4:3,……通过训练,学生思维的灵活性得到了锻炼;解题思路它以前活跃,化难为易的本领也逐步具备了。
让学生掌握条件与条件、条件与问题,深刻理解数量关系的基础上,灵活运用所学知识,从不同起点,不同角度,多侧面地寻求多种解法,也能促进学生思维的灵活性。
能力永远指的是某种活动的能力,能力只能在活动中形成。能力不仅是知识、技能的掌握,而具有心理过程的个性特征,这种心理特征是在掌握知识、技能的过程中发展和形成的。培养数学能力就要通过数学知识的运用和练习来进行,光靠教师的讲解,是培养不出能力来的。正因为如此,培养能力的教学,一是改革教材,重新编排练习,并使练习成为教材的重要组成部分;二是改革教法,重在选用培养能力的教学方法。
【关键词】能力;培养
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。
能力是什么?能力是与活动联系在一起的,从事任何活动都必须具备相应的能力。每一种活动都对人的心理过程、分析的能力、反应的速度、个性的特征提出某些要求。能力就是人的这些心理特征,符合于相应活动的要求,并且是顺利地、高质量地完成这种活动的条件。通过多年的教学经验,认为在改革教材的基础上,对应用题的教学,突出地抓住了数学能力的培养。在培养能力方面,主要有几个特点:
一、抓住特殊能力——数学能力的培养
近十年来,许多教师对教学进行改革,重视能力的培养,注意培养学生的观察能力、思维能力、想象能力、记忆能力等。我觉得这些能力属于一般能力。而学生的学习活动是分学科进行的,不同学科还有不同的特殊能力。如语文能力、数学能力、生物能力、音乐能力等等。我们要使培养能力的教学改革深入下去,取得更好的成效,就不能停留在培养一般能力,而要深入到学科,根据学科本身的特点,研究如何培养学科的能力。这是培养能力如何深入的一个重要问题。我注重抓住特殊能力——数学能力的培养。我根据小学生智力发展的特点,主要培养掌握数学问题结构的能力、逻辑思维能力,思维的灵活性和数学概括能力。以掌握数学问题结构的能力为例。什么叫数学问题结构?通常人们在解答一个问题前,必须先了解这个问题,分析这个问题,找出问题的已知条件和要求,这就要进行分析、综合研究条件之间的关系,条件与问题之间的关系,然后把这些成分综合成一个整体,抓住问题中具有本质意义的那些关系。这就是抓住了数学问题的结构。“能力强的学生拿到一道数学题时,一眼就看出了问题的结构,就能把已知条件联系起来,而数学能力平常的学生遇到一类新问题时,一般说来,他们只是感知问题孤立的数学成分,并不理解这个问题。对于平常的学生来说,特别重要的是要能通过分析和综合过程把问题的各种成分联系起来。”(克鲁切茨基《中小学生数学能力心理学》252、254页)我在教一步应用题时,就着重地抓了数学问题结构的训练。如画线段图的训练,补充问题与条件的训练,题意不变改变叙述方法的训练,自编应用题的训练,根据问题说出所需条件的训练,对比训练等。在讲两步应用题时,重点上了两步应用题的“结构课”,同时进行变直接条件为间接条件,变换问法,让学生扩题、缩题、拆题,看问题要条件等四个方面的训练。讲多步复杂应用题时,又进行了多步应用题的“发散思维课”及相应的各种训练。通过一系列的教学和训练,使每个学生都掌握了应用题结构的能力。
二、认真审题,揭示联系,培养思维的流畅性。
学生能否正确的解答应用题,首先是审题,我注意从读题入手,引导学生认真审题。具体做法是:
1、熟悉性的读,分清题中的情节、条件和问题。读完后,不看书想一想,用自己的话说一说题目中的意思;
2、批划性的读,即用自己喜欢的、不同的符号将题中表达情节和数量关系的词语划下来,帮助理解题意,疑难之处也应标出来;
3、推理性的读,以弄清条件与条件,问题与问题之间的联系,寻求解题的基本途径,明确解题思路的指向。
三、 重视解题思路的训练
应用题之所以难学,问题本身一般比较复杂是一个原因,但从教学法来说,更重要的是解题思路(思维过程的顺序、步骤与方法)缺乏应有的训练,使许多学生感到问题无从下手,不知道怎样去想。对于这一点,我们只要把它同计算题作一比较,就清楚了。如做计算题时,学生对运算法则、运算顺序和步骤,都是清清楚楚的。学生的思维过程同运算顺序是一致的。计算的每一步都在式子里反映出来,看得见、摸得着,学生计算得对与错一目了然。计算题通过训练学生容易掌握。而解应用题就不同了,学生要了解题意,分析条件与条件之间,条件与问题之间的各种数量关系,要通过分析、综合,找到解题的途径和方法。从审题到列出式子,思维过程少则也有几步,都是用内部言语的形式进行的。这种用内部言语进行的思维过程,教师既难以知道学生的思维是否合理、正确,有无错误,更难以进行有针对性地训练。对于这样的问题,我根据学生智力活动的形成是从外部言语到内部言语这个特点,进行思维能力的教学。
四、合理想象,多向探求,培养思维的灵活性。
为了培养学生思维的灵活性,我注意引导学生根据不同条件,展开合理的想象、推理。例如:从“一本书80页,张明第一天看了全书的40%,第二天看了全书的30%”三个条件中,可以想象出什么结果。经过思考后学生提出:
1、从第一个条件和第二个条件可知张明第一天读书的页数;
2、从第一条件和第三个条件中可知张明第二天读的页数;
3、从第二个条件和第三个条件中可知:(1)两天共看56页,(2)还剩24页没看;(3)第一天比第二天多看8页;(4)第一天看的是第二天的 1 。
4、从以上三个条件可知:
(1)两天共看45页,
(2)还剩24页没看;
(3)第一天比第二天多看8页;
(4)两天看的页数的比是4:3,……通过训练,学生思维的灵活性得到了锻炼;解题思路它以前活跃,化难为易的本领也逐步具备了。
让学生掌握条件与条件、条件与问题,深刻理解数量关系的基础上,灵活运用所学知识,从不同起点,不同角度,多侧面地寻求多种解法,也能促进学生思维的灵活性。
能力永远指的是某种活动的能力,能力只能在活动中形成。能力不仅是知识、技能的掌握,而具有心理过程的个性特征,这种心理特征是在掌握知识、技能的过程中发展和形成的。培养数学能力就要通过数学知识的运用和练习来进行,光靠教师的讲解,是培养不出能力来的。正因为如此,培养能力的教学,一是改革教材,重新编排练习,并使练习成为教材的重要组成部分;二是改革教法,重在选用培养能力的教学方法。