论文部分内容阅读
摘 要:“始终要把数学教学的‘育人’目标放在心上”观点很受启发,对“理解数学、理解学生、理解教学”有进一步的实践认识,同时对数学归纳法这节内容的教学也有了更深刻的理解。
关键词:数学归纳法;理解数学;理解学生;理解教学;课堂推进命题;通项公式
中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)18-080-01
0
一、对“数学归纳法”的理解
1.数学归纳法的核心
学生对于归纳假设常常会感到疑惑不解:要证明某个命题正确,怎么可假以设这个命题正确呢?命题p(k)与命题p(n)有何关系?假设命题p(k)正确在证明过程中起什么作用?理解这些问题,也就理解了数学归纳法的思想内涵:数学归纳法要证明的命题p(n)是一个命题序列,其中p(k)与p(k 1)是该命题序列中的两个连续命题。为了证明这个命题序列整体的正确性,我们首先得证明p(1)为真(是归纳奠基);在归纳递推过程中k是一个变动的量,假设命题p(k)为真是递推证明的条件,由p(k)为真推出p(k 1)为真,表明前一个命题为真必可推出它的后继命题也为真。由于有了第一步的奠基验证,归纳假设是有依据的,因此我们所要证的命题序列中,可由归纳递推p(1)p(2),p(2)p(3),p(k)p(k 1)。根据归纳公理证明了{p(1),p(2):p(n)。}中命题都是正确,即对任意正整数n,命题都成立。可以说,归纳假设是递推的接力棒,没有归纳假设,递推就无法进行。通过上述问题的解决过程不难发现,数学归纳法的核心思想是归纳递推思想。
2.数学归纳法的应用价值
数学归纳法虽不是归纳法(是一种严格的演绎推理证明方法),但是在数学归纳法的思维模式中还是能找到归纳法的一些影子的:事先通过大量个别事实的观察,通过归纳概括出一般性的结论,然后利用数学归纳法的证明解决问题,即归纳结论推理证明两个逻辑段。“观察——归纳——猜想——证明”,这种思维模式的教學是培养学生理性思维的有效载体,它本身就是一种素质教育。作为概念起始课,在教学中应强调它的思维作用,学会用数学归纳法的思维方式去思考问题,而不是过分强调它的证题格式、证题技巧。
二、理解学生是课堂推进的基本保障
1.了解学生的学习心理
由于年龄特征,高中学生在学习新知识的过程中往往会伴随着一些叛逆心理与求异心理(类似于好斗心理与标新心理),他们会在课堂上提出一些在教师预设之外的问题,甚至与教师“对着干”。学生的这些学习心理对教师开展课堂教学来讲是一把“双刃剑”,把握不好,会使课堂推进失控,迷失在学生无休止的“题”外争论;把握得当,则会激发学生的学习热情与探求新知欲望。
2.了解学生的认知结构
学生在学习数学归纳法之前,有关正整数命题的问题主要在数列的学习中接触,由于间隔时间过长,数列学习中不完全归纳思想已经深深印在学生内心,他们对于由猜想产生的结论会不加怀疑,在这种认识的作用下,学生会怀疑学习数学归纳法的必要性,导致在观念上首先会排斥它。因此本节课的教学引入首先要解决的问题是如何让学生在认知上形成冲突,对固有的知识结构产生怀疑,进而形成对数学归纳法探求的迫切心理。
3.了解学生在思维深刻性方面的不足
教学中我们经常会遇到这样一些情景:课堂上师生互动热烈,师生对话中学生对教师提出的问题能作出正确的判断,或者学生的课堂活动完全在教师的预设中。这很容易给我们产生一些错觉,以为学生对所学内容已经掌握了,对概念中蕴涵的思想方法已有所体会了。其实这种对话、活动往往集中在部分头脑灵活、反应较快的学生对教师预设的问题的一种顺应,他们的思维并非一定触及概念的思想内涵,还有一部分学生则是充当听众的角色。产生这种情况的原因主要在于教师在预设设时,是凭自己对对概念的理解角度,没有站在学生的角度开展问题诊断分析,或者已经考虑到学生的理解困难,但是被假象所蒙蔽,高估学生的思维能力,或者高估学生深层推进的自觉意识,没能将思维提升到一个高度让学生去体验。
“数学归纳法”是高中阶段一个比较抽象的数学概念,学生对其中的证明步骤的掌握不会有困难,但是要理解概念以及概念背后的思想方法不是一件容易的事,尤其是对步骤2中的“假设”感到不解,对两个步骤之后,结论就成立了感到困惑,对正整数k与n的关系琢磨不透,教学中教师决不能对这些问题匆忙了事。
三、理解数学归纳法本质
选择恰当的教学方式。同为数学归纳法的起始课,两位教师对数学思想方法的教学有着不同的理解。教师甲选择的教学方式有着这样一种教学理解:数学归纳法本身就是一种数学思想方法,因此教学的一开始就应紧紧围绕如何有利于学生对数学归纳法思想方法的体会与理解,从理解思想方法的高度探寻数学归纳法这一有关正整数命题的推理方法。教师乙的教学理解是这样:先让学生掌握数学归纳法这种推理方法(形式化的步骤),通过辨析明确完整的数学归纳法过程,然后在后续的不等式证明中逐步体会归纳递推思想。
两种教学方法选择,代表了广大教师对“数学归纳法”教学的两种认识。笔者认为,数学归纳法的本质内涵揭示了这种方法背后有着丰富的数学思想,数学归纳法提供的“观察——归纳——猜想——证明”的思维模式决定了它本身就是一种数学思想方法。将数学归纳法仅仅看作一种推理方法,由于它的步骤的固定的、形式化的,容易使课堂教学变成接受的、静态的学习环境;而抓住这种思维模式的逻辑结构,从思想方法的角度去认识、探索数学归纳法,才能将“数学归纳法”这一高度抽象的数学学术形态有效地转变为具有亲和力的教育形态,才能使教学变为动态的生成。同时在数学思想引领下进行信息检索获得的数学概念、方法,是一种概念内化的学习方式,这对改善学生的认知方式有极大的好处。
关键词:数学归纳法;理解数学;理解学生;理解教学;课堂推进命题;通项公式
中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)18-080-01
0
一、对“数学归纳法”的理解
1.数学归纳法的核心
学生对于归纳假设常常会感到疑惑不解:要证明某个命题正确,怎么可假以设这个命题正确呢?命题p(k)与命题p(n)有何关系?假设命题p(k)正确在证明过程中起什么作用?理解这些问题,也就理解了数学归纳法的思想内涵:数学归纳法要证明的命题p(n)是一个命题序列,其中p(k)与p(k 1)是该命题序列中的两个连续命题。为了证明这个命题序列整体的正确性,我们首先得证明p(1)为真(是归纳奠基);在归纳递推过程中k是一个变动的量,假设命题p(k)为真是递推证明的条件,由p(k)为真推出p(k 1)为真,表明前一个命题为真必可推出它的后继命题也为真。由于有了第一步的奠基验证,归纳假设是有依据的,因此我们所要证的命题序列中,可由归纳递推p(1)p(2),p(2)p(3),p(k)p(k 1)。根据归纳公理证明了{p(1),p(2):p(n)。}中命题都是正确,即对任意正整数n,命题都成立。可以说,归纳假设是递推的接力棒,没有归纳假设,递推就无法进行。通过上述问题的解决过程不难发现,数学归纳法的核心思想是归纳递推思想。
2.数学归纳法的应用价值
数学归纳法虽不是归纳法(是一种严格的演绎推理证明方法),但是在数学归纳法的思维模式中还是能找到归纳法的一些影子的:事先通过大量个别事实的观察,通过归纳概括出一般性的结论,然后利用数学归纳法的证明解决问题,即归纳结论推理证明两个逻辑段。“观察——归纳——猜想——证明”,这种思维模式的教學是培养学生理性思维的有效载体,它本身就是一种素质教育。作为概念起始课,在教学中应强调它的思维作用,学会用数学归纳法的思维方式去思考问题,而不是过分强调它的证题格式、证题技巧。
二、理解学生是课堂推进的基本保障
1.了解学生的学习心理
由于年龄特征,高中学生在学习新知识的过程中往往会伴随着一些叛逆心理与求异心理(类似于好斗心理与标新心理),他们会在课堂上提出一些在教师预设之外的问题,甚至与教师“对着干”。学生的这些学习心理对教师开展课堂教学来讲是一把“双刃剑”,把握不好,会使课堂推进失控,迷失在学生无休止的“题”外争论;把握得当,则会激发学生的学习热情与探求新知欲望。
2.了解学生的认知结构
学生在学习数学归纳法之前,有关正整数命题的问题主要在数列的学习中接触,由于间隔时间过长,数列学习中不完全归纳思想已经深深印在学生内心,他们对于由猜想产生的结论会不加怀疑,在这种认识的作用下,学生会怀疑学习数学归纳法的必要性,导致在观念上首先会排斥它。因此本节课的教学引入首先要解决的问题是如何让学生在认知上形成冲突,对固有的知识结构产生怀疑,进而形成对数学归纳法探求的迫切心理。
3.了解学生在思维深刻性方面的不足
教学中我们经常会遇到这样一些情景:课堂上师生互动热烈,师生对话中学生对教师提出的问题能作出正确的判断,或者学生的课堂活动完全在教师的预设中。这很容易给我们产生一些错觉,以为学生对所学内容已经掌握了,对概念中蕴涵的思想方法已有所体会了。其实这种对话、活动往往集中在部分头脑灵活、反应较快的学生对教师预设的问题的一种顺应,他们的思维并非一定触及概念的思想内涵,还有一部分学生则是充当听众的角色。产生这种情况的原因主要在于教师在预设设时,是凭自己对对概念的理解角度,没有站在学生的角度开展问题诊断分析,或者已经考虑到学生的理解困难,但是被假象所蒙蔽,高估学生的思维能力,或者高估学生深层推进的自觉意识,没能将思维提升到一个高度让学生去体验。
“数学归纳法”是高中阶段一个比较抽象的数学概念,学生对其中的证明步骤的掌握不会有困难,但是要理解概念以及概念背后的思想方法不是一件容易的事,尤其是对步骤2中的“假设”感到不解,对两个步骤之后,结论就成立了感到困惑,对正整数k与n的关系琢磨不透,教学中教师决不能对这些问题匆忙了事。
三、理解数学归纳法本质
选择恰当的教学方式。同为数学归纳法的起始课,两位教师对数学思想方法的教学有着不同的理解。教师甲选择的教学方式有着这样一种教学理解:数学归纳法本身就是一种数学思想方法,因此教学的一开始就应紧紧围绕如何有利于学生对数学归纳法思想方法的体会与理解,从理解思想方法的高度探寻数学归纳法这一有关正整数命题的推理方法。教师乙的教学理解是这样:先让学生掌握数学归纳法这种推理方法(形式化的步骤),通过辨析明确完整的数学归纳法过程,然后在后续的不等式证明中逐步体会归纳递推思想。
两种教学方法选择,代表了广大教师对“数学归纳法”教学的两种认识。笔者认为,数学归纳法的本质内涵揭示了这种方法背后有着丰富的数学思想,数学归纳法提供的“观察——归纳——猜想——证明”的思维模式决定了它本身就是一种数学思想方法。将数学归纳法仅仅看作一种推理方法,由于它的步骤的固定的、形式化的,容易使课堂教学变成接受的、静态的学习环境;而抓住这种思维模式的逻辑结构,从思想方法的角度去认识、探索数学归纳法,才能将“数学归纳法”这一高度抽象的数学学术形态有效地转变为具有亲和力的教育形态,才能使教学变为动态的生成。同时在数学思想引领下进行信息检索获得的数学概念、方法,是一种概念内化的学习方式,这对改善学生的认知方式有极大的好处。