论文部分内容阅读
阅读是人类社会生活的一项重要活动,是人类汲取知识的主要手段和认识世界的重要途径。一谈及阅读,人们联想的往往是语文阅读,然而,随着社会的发展、科学技术的进步及“社会的数学化”,仅具语文阅读能力的社会人已明显地显露出其能力的不足,如他们看不懂某些产品使用说明书,看不懂股市走势图,等等。此即表明,现代及未来社会要求人们具有的阅读能力已不再只是语文阅读能力,而是一种以语文阅读能力为基础,包括外语阅读能力、数学阅读能力、科技阅读能力在内的综合阅读能力。因此,在只重视语文阅读能力培养的今天学校教育中,加强学科阅读教育研究,探索学科阅读教学的特殊性及教育功能,认识学科阅读能力培养的重要性,就显得尤为重要。
数学是一种语言,“以前,人们认为数学只是自然科学的语言和工具,现在数学已成了所有科学——自然科学、社会科学、管理科学等的工具和语言”。不过,这种语言与日常语言不同,“日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的”。因此,美国著名心理学家布龙菲尔德说:“数学不过是语言所能达到的最高境界”。更有前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。而语言的学习是离不开阅读的,所以,数学的学习不能离开阅读,这便是数学阅读之由来。
数学阅读过程同一般阅读过程一样,是一个完整的心理活动过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动因素。同时,它也是一个不断假设、证明、想象、推理的积极能动的认知过程。但由于数学语言的符号化、逻辑化及严谨性、抽象性等特点,数学阅读又有不同于一般阅读的特殊性,认识这些特殊性,对指导数学阅读有重要意义。
首先,由于数学语言的高度抽象性,数学阅读需要较强的逻辑思维能力。在阅读过程中,读者必须认读感知阅读材料中有关的数学术语和符号,理解每个术语和符号,并能正确依据数学原理分析它们之间的逻辑关系,最后达到对材料的本真理解,形成知识结构,这中间用到的逻辑推理思维特别多。而一般阅读“理解和感知好像融合为一体,因为这种情况下的阅读,主要的是运用已有的知识,把它与新的印象联系起来,从而掌握阅读的对象”,较少运用逻辑推理思维。
其次,数学语言的特点也在于它的精确性,每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,数学中的结论错对分明,不存在似是而非模棱两可的断言,当一个学生试图阅读、理解一段数学材料或一个概念、定理或其证明时,他必须了解其中出现的每个数学术语和每个数学符号的精确含义,不能忽视或略去任何一个不理解的词汇。因此,浏览、快速阅读等阅读方式不太适合数学阅读学习。
第三,数学阅读要求认真细致。阅读一本小说或故事书时,可以不注意细节,进行跳阅或浏览无趣味的段落,但数学阅读由于数学教科书编写的逻辑严谨性及数学“言必有据”的特点,要求对每个句子、每个名词术语、每个图表都应细致地阅读分析,领会其内容、含义。对新出现的数学定义、定理一般不能一遍过,要反复仔细阅读,并进行认真分析直至弄懂含义。数学阅读常出现这种情况,认识一段数学材料中每一个字、词或句子,却不能理解其中的推理和数学含义,更难体会到其中的数学思想方法。数学语言形式表述与数学内容之间的这一矛盾决定了数学阅读必须勤思多想。
第四,数学阅读过程往往是读写结合过程。一方面,数学阅读要求记忆重要概念、原理、公式,而书写可以加快、加强记忆,数学阅读时,对重要的内容常通过书写或作笔记来加强记忆;另一方面,教材编写为了简约,数学推理的理由常省略,运算证明过程也常简略,阅读时,如果从上一步到下一步跨度较大,常需纸笔演算推理来“架桥铺路”,以便顺利阅读;还有,数学阅读时常要求从课文中概括归纳出一些东西,如解题格式、证明思想、知识结构框图,或举一些反例、变式来加深理解,这些往往要求读者以注脚的形式写在页边上,以便以后复习巩固。
第五,数学阅读过程中语意转换频繁,要求思维灵活。数学教科书中的语言可以说是通常的文字语言、数学符号语言、图形语言的交融,数学阅读重在理解领会,而实现领会目的的行为之一就是“内部言语转化”,即把阅读交流内容转化为易于接受的语言形式。因此,数学阅读常要灵活转化阅读内容。如把一个用抽象表述方式阐述的问题转化成用具体的或不那么抽象的表达方式表述的问题,即“用你自己的语言来阐述问题”;把用符号形式或图表表示的关系转化为言语的形式以及把言语形式表述的关系转化成符号或图表形式;把一些用言语形式表述的概念转化成用直观的图形表述形式;用自己更清楚的语言表述正规定义或定理等。
总之,数学阅读常要求大脑建起灵活的语言转化机制,而这也正是数学阅读有别于其它阅读的最主要的方面。
数学是一种语言,“以前,人们认为数学只是自然科学的语言和工具,现在数学已成了所有科学——自然科学、社会科学、管理科学等的工具和语言”。不过,这种语言与日常语言不同,“日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的”。因此,美国著名心理学家布龙菲尔德说:“数学不过是语言所能达到的最高境界”。更有前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。而语言的学习是离不开阅读的,所以,数学的学习不能离开阅读,这便是数学阅读之由来。
数学阅读过程同一般阅读过程一样,是一个完整的心理活动过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动因素。同时,它也是一个不断假设、证明、想象、推理的积极能动的认知过程。但由于数学语言的符号化、逻辑化及严谨性、抽象性等特点,数学阅读又有不同于一般阅读的特殊性,认识这些特殊性,对指导数学阅读有重要意义。
首先,由于数学语言的高度抽象性,数学阅读需要较强的逻辑思维能力。在阅读过程中,读者必须认读感知阅读材料中有关的数学术语和符号,理解每个术语和符号,并能正确依据数学原理分析它们之间的逻辑关系,最后达到对材料的本真理解,形成知识结构,这中间用到的逻辑推理思维特别多。而一般阅读“理解和感知好像融合为一体,因为这种情况下的阅读,主要的是运用已有的知识,把它与新的印象联系起来,从而掌握阅读的对象”,较少运用逻辑推理思维。
其次,数学语言的特点也在于它的精确性,每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,数学中的结论错对分明,不存在似是而非模棱两可的断言,当一个学生试图阅读、理解一段数学材料或一个概念、定理或其证明时,他必须了解其中出现的每个数学术语和每个数学符号的精确含义,不能忽视或略去任何一个不理解的词汇。因此,浏览、快速阅读等阅读方式不太适合数学阅读学习。
第三,数学阅读要求认真细致。阅读一本小说或故事书时,可以不注意细节,进行跳阅或浏览无趣味的段落,但数学阅读由于数学教科书编写的逻辑严谨性及数学“言必有据”的特点,要求对每个句子、每个名词术语、每个图表都应细致地阅读分析,领会其内容、含义。对新出现的数学定义、定理一般不能一遍过,要反复仔细阅读,并进行认真分析直至弄懂含义。数学阅读常出现这种情况,认识一段数学材料中每一个字、词或句子,却不能理解其中的推理和数学含义,更难体会到其中的数学思想方法。数学语言形式表述与数学内容之间的这一矛盾决定了数学阅读必须勤思多想。
第四,数学阅读过程往往是读写结合过程。一方面,数学阅读要求记忆重要概念、原理、公式,而书写可以加快、加强记忆,数学阅读时,对重要的内容常通过书写或作笔记来加强记忆;另一方面,教材编写为了简约,数学推理的理由常省略,运算证明过程也常简略,阅读时,如果从上一步到下一步跨度较大,常需纸笔演算推理来“架桥铺路”,以便顺利阅读;还有,数学阅读时常要求从课文中概括归纳出一些东西,如解题格式、证明思想、知识结构框图,或举一些反例、变式来加深理解,这些往往要求读者以注脚的形式写在页边上,以便以后复习巩固。
第五,数学阅读过程中语意转换频繁,要求思维灵活。数学教科书中的语言可以说是通常的文字语言、数学符号语言、图形语言的交融,数学阅读重在理解领会,而实现领会目的的行为之一就是“内部言语转化”,即把阅读交流内容转化为易于接受的语言形式。因此,数学阅读常要灵活转化阅读内容。如把一个用抽象表述方式阐述的问题转化成用具体的或不那么抽象的表达方式表述的问题,即“用你自己的语言来阐述问题”;把用符号形式或图表表示的关系转化为言语的形式以及把言语形式表述的关系转化成符号或图表形式;把一些用言语形式表述的概念转化成用直观的图形表述形式;用自己更清楚的语言表述正规定义或定理等。
总之,数学阅读常要求大脑建起灵活的语言转化机制,而这也正是数学阅读有别于其它阅读的最主要的方面。