论文部分内容阅读
预测燃气轮机未来的功率变化趋势对故障预测非常重要。针对燃气轮机故障预测的问题,提出了一种基于Elman神经网络的功率预测方法。以某电厂燃气轮机的实际数据为例,选取与功率变化最相关的属性。通过对比实验,采取合适的预处理方法,确定神经网络模型的输入,设置合适的隐含层神经元个数,从而建立了基于Elman神经网络的燃气轮机功率预测模型。最后通过与反向传播(back propagation,BP)网络、径向基函数(radial basis function,RBF)网络进行比较,验证了该方法的有效性。