论文部分内容阅读
摘 要:闭合电路欧姆定律是高中电路部分的核心内容,这一定律涉及的物理量较多,相关题目的类型又比较多,从教学实际看,不少同学对该定律理解不到位,运用时感到困难。本文将2个变量间的关系用图像呈现出来,以便于学生能更直观地理解定律,达到熟练运用该定律的目的。
关键词:电动势;电压;电流;电阻;功率
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0060-3
1 關于闭合电路欧姆定律
1.定律内容:在外电路为纯电阻的闭合电路中,电流的大小跟电源的电动势成正比,跟内、外电阻之和成反比。
2.定律的得出:仔细分析人教版和教科版教材,他们给出定律的过程是相同的。在电源外部,电流由电源正极流向负极,在外电路上有电势降落,习惯上称为路端电压或外电压U,在内电路上也有电势降落,称为内电压U’;在电源内部,由负极到正极电势升高,升高的数值等于电源的电动势。理论和实践证明电源内部电势升高的数值等于电路中电势降低的数值,即电源电动势E等于外电压U和内电压U’之和,即E=U U’=U Ir。若外电路为纯电阻,则U=IR,所以E=IR Ir,I=
从教学实际看,上述给出定律的方法很多同学并不能理解,只能生硬的接受,这给学生对定律的理解和运用带来困难。在教学中笔者尝试从能量角度推导定律,效果较好,过程如下:从能量转化观点看,闭合电路中同时进行着两种形式的能量转化:一种是把其他形式的能转化为电能,另一种是把电能转化为其他形式的能。
设一个正电荷q,从正极出发,经外电路和内电路回转一周,其能量的转化情况如下:
在外电路中,设外电路的路端电压为U,那么正电荷由正极经外电路移送到负极的过程中,电场力推动电荷所做的功W=qU,于是必有qU的电能转化为其他形式的能量(如化学能、机械能等)。在内电路中,设内电压为U’,那么正电荷由负极移送到正极的过程中,电场力所做的功W=qU’,于是必有qU’的电能转化为内能。若电源电动势为E,在电源内部依靠非静电力把电量为q的正电荷从负极移送到正极的过程中,非静电力做的功W=qE,于是有qE的其他形式的能(化学能、机械能等)转化为电能。
因此,根据能量转化和守恒定律,在闭合电路中,由于电场力移送电荷做功,使电能转化为其他形式的能(qU qU’),应等于在内电路上由于非静电力移送电荷做功,使其他形式的能转化成电能(qE),因而qE=qU qU’,即E=U U’。若外电路为纯电阻R,内电路的电阻为r,闭合电路中的电流强度为I,则U=IR,U’=Ir,代入上式即得I=
E/(R r)。
3.定律的理解:不论外电路是否为纯电阻,E=U U’=U Ir总是成立的,只有当外电路为纯电阻时,才能成立。闭合电路欧姆定律的适用条件跟部分电路欧姆定律一样,都是只适用于金属导电和电解液导电。
2 不同的物理量间的图像关系以及对图像的理解(以外电路为纯电阻为例)
图像1 电路中的总电流与外电阻的关系即I-R图像
图像2 外电压与外电阻的关系即U-R图像
由闭合电路欧姆定律可得:
分析可得:R增大,U增大;R减小,U减小,但不成线性关系。R→0,U→0; R→∞,U→E。故U-R图像如图2所示。当外电路短路(R=0),外电压为0;当外电路开路R→∞,外电压等于电动势E,即若题目中告诉某一电源的开路电压,则间接告诉了电动势E的值。
图像3 外电压与总电流的关系即U-I图像
由闭合电路欧姆定律可得:U=E-U’=E-Ir。
分析可得:由于E、r为定值,故U与I成线性关系,斜率为负,故图像应如图3所示。当I=0,U=E,即图像的纵截距表示电动势;当 此时外电路短路,此电流即为短路电流,即横截距表示短路电流。斜率k=-r,即斜率的绝对值表示内电阻。
由上述分析可知,若给出了U-I图像,则由图像就可以知道电源电动势E和内阻r这两个重要的参量。若将不同电源的U-I图像画在同一个图中,如图4所示,则可以比较不同电源的电动势和内阻的大小。由图4可知E1=E2、r1 图像4 电源的输出功率与外电阻的关系,即P-R图像
图像5 电路中的功率与总电流的关系,即P-I图像
与闭合电路相关的功率有3个:电源的总功率、电源内部的热功率、电源的输出功率。
由P=IE可知P与I成正比,图像应为过原点的一条倾斜的直线。
由P=I2r可知图像应为顶点过原点的关于纵轴对称的开口向上的抛物线的一半。
由P=P-P=IE-I2r可知图像应为过原点的开口向下的抛物线的一部分。
若将3个功率与电流的关系图像画在同一图像中,则分别对应着图6中的图线1、2、3。
利用图线1可求电动势E,利用图线2可求内阻r,需要特别注意的是:此图像中3条图线不能随意画。“1”“2”交点说明此时P=P,即P=0,外电路短路,电流最大,此状态下图线“3”与横轴交点值一定是“1”“2”交点对应的横坐标值,否则就是错误的。“2”“3”交点的含义为P=P,此状态下R=r,则“2”“3”交点对应的横坐标一定为 ,若不是则错误。还必须注意的是“2”“3”的交点一定是“3”的最高点,因为R=r时,P最大,若不是这样则此图画错了。
案例 在图7(a)所示电路中,R0是阻值为5 Ω的定值电阻,R1是一滑动变阻器,在其滑片从最右端滑至最左端的过程中,测得电源的路端电压U随电流I的变化图线如图7(b)所示,其中图线上的A、B两点是滑片在变阻器的两个不同端点时分别得到的,讨论以下问题:
问题1 滑片从最右端滑至最左端的过程中,电流表示数如何变化? 分析:滑片从最右端滑至最左端的过程中,由电路结构可知外电阻R变小,由I-R图像可知电流表示数变大。
问题2 滑片从最右端滑至最左端的过程中,电压表示数如何变化?
分析:滑片從最右端滑至最左端的过程中,由电路结构可知外电阻R变小,电压表测量的是外电压,由U-R图像可知电压表示数变小。
问题3 电源电动势和内阻各为多大?
分析:图7(b)给出的是外电压与电流的关系,由图可求得斜率绝对值为20,将图线延长与纵轴相交,可得纵截距为20,由U-I图像的物理含义可知电源电动势E=20 V,内阻r=20 Ω。
问题4 滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?最大输出功率为多少?
分析:由题目所给条件可求得R1的最大阻值为75 Ω,滑片从最右端滑至最左端的过程中,外电阻的变化范围为80 Ω~5 Ω,由P-R图像可知P先变大再变小。调节过程中可以满足R=r,则当R1的有效阻值为15 Ω时,电源输出功率达最大 ,即为5 W。
问题5 若在上述条件下,仅将R0的阻值改为30 Ω,滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?电源的最大输出功率为多少?
分析:滑片从最右端滑至最左端的过程中,外电阻的变化范围为105 Ω~30 Ω,由P-R图像可知P一直变小。由于无法满足R=r,则电源输出功率不可能为,则当R与r最最接近即R1=0 Ω时电源输出功率最大,计算可得为4.8 W。
与闭合电路欧姆定律应用相关的题目较多,题型多种多样,解决这类题目的关键是要搞清电路结构,搞清电表的测量对象,分清已知量与未知量,再运用相应规律求解则可。当然,这也不是一蹴而就的,只有多做、多练、多思考才能达到较好的效果。在解答闭合电路问题时,部分电路欧姆定律和全电路欧姆定律经常交替使用,这就要求我们认清研究对象是全电路还是某一段电路,是这一段电路还是另一段电路,以便选用对应的欧姆定律,并且要注意每一组物理量(I、U或I、E、R、r)的对应关系是对同一研究对象的,不可“张冠李戴”。
参考文献:
[1]徐琪,李飞跃.“闭合电路欧姆定律”教学设计[J].物理教学探讨,2015,33(9):4—8.
[2]吕迎春.闭合电路欧姆定律中图像的应用[J].中学物理,2015,33(6):86—87.
(栏目编辑 邓 磊)
关键词:电动势;电压;电流;电阻;功率
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0060-3
1 關于闭合电路欧姆定律
1.定律内容:在外电路为纯电阻的闭合电路中,电流的大小跟电源的电动势成正比,跟内、外电阻之和成反比。
2.定律的得出:仔细分析人教版和教科版教材,他们给出定律的过程是相同的。在电源外部,电流由电源正极流向负极,在外电路上有电势降落,习惯上称为路端电压或外电压U,在内电路上也有电势降落,称为内电压U’;在电源内部,由负极到正极电势升高,升高的数值等于电源的电动势。理论和实践证明电源内部电势升高的数值等于电路中电势降低的数值,即电源电动势E等于外电压U和内电压U’之和,即E=U U’=U Ir。若外电路为纯电阻,则U=IR,所以E=IR Ir,I=
从教学实际看,上述给出定律的方法很多同学并不能理解,只能生硬的接受,这给学生对定律的理解和运用带来困难。在教学中笔者尝试从能量角度推导定律,效果较好,过程如下:从能量转化观点看,闭合电路中同时进行着两种形式的能量转化:一种是把其他形式的能转化为电能,另一种是把电能转化为其他形式的能。
设一个正电荷q,从正极出发,经外电路和内电路回转一周,其能量的转化情况如下:
在外电路中,设外电路的路端电压为U,那么正电荷由正极经外电路移送到负极的过程中,电场力推动电荷所做的功W=qU,于是必有qU的电能转化为其他形式的能量(如化学能、机械能等)。在内电路中,设内电压为U’,那么正电荷由负极移送到正极的过程中,电场力所做的功W=qU’,于是必有qU’的电能转化为内能。若电源电动势为E,在电源内部依靠非静电力把电量为q的正电荷从负极移送到正极的过程中,非静电力做的功W=qE,于是有qE的其他形式的能(化学能、机械能等)转化为电能。
因此,根据能量转化和守恒定律,在闭合电路中,由于电场力移送电荷做功,使电能转化为其他形式的能(qU qU’),应等于在内电路上由于非静电力移送电荷做功,使其他形式的能转化成电能(qE),因而qE=qU qU’,即E=U U’。若外电路为纯电阻R,内电路的电阻为r,闭合电路中的电流强度为I,则U=IR,U’=Ir,代入上式即得I=
E/(R r)。
3.定律的理解:不论外电路是否为纯电阻,E=U U’=U Ir总是成立的,只有当外电路为纯电阻时,才能成立。闭合电路欧姆定律的适用条件跟部分电路欧姆定律一样,都是只适用于金属导电和电解液导电。
2 不同的物理量间的图像关系以及对图像的理解(以外电路为纯电阻为例)
图像1 电路中的总电流与外电阻的关系即I-R图像
图像2 外电压与外电阻的关系即U-R图像
由闭合电路欧姆定律可得:
分析可得:R增大,U增大;R减小,U减小,但不成线性关系。R→0,U→0; R→∞,U→E。故U-R图像如图2所示。当外电路短路(R=0),外电压为0;当外电路开路R→∞,外电压等于电动势E,即若题目中告诉某一电源的开路电压,则间接告诉了电动势E的值。
图像3 外电压与总电流的关系即U-I图像
由闭合电路欧姆定律可得:U=E-U’=E-Ir。
分析可得:由于E、r为定值,故U与I成线性关系,斜率为负,故图像应如图3所示。当I=0,U=E,即图像的纵截距表示电动势;当 此时外电路短路,此电流即为短路电流,即横截距表示短路电流。斜率k=-r,即斜率的绝对值表示内电阻。
由上述分析可知,若给出了U-I图像,则由图像就可以知道电源电动势E和内阻r这两个重要的参量。若将不同电源的U-I图像画在同一个图中,如图4所示,则可以比较不同电源的电动势和内阻的大小。由图4可知E1=E2、r1
图像5 电路中的功率与总电流的关系,即P-I图像
与闭合电路相关的功率有3个:电源的总功率、电源内部的热功率、电源的输出功率。
由P=IE可知P与I成正比,图像应为过原点的一条倾斜的直线。
由P=I2r可知图像应为顶点过原点的关于纵轴对称的开口向上的抛物线的一半。
由P=P-P=IE-I2r可知图像应为过原点的开口向下的抛物线的一部分。
若将3个功率与电流的关系图像画在同一图像中,则分别对应着图6中的图线1、2、3。
利用图线1可求电动势E,利用图线2可求内阻r,需要特别注意的是:此图像中3条图线不能随意画。“1”“2”交点说明此时P=P,即P=0,外电路短路,电流最大,此状态下图线“3”与横轴交点值一定是“1”“2”交点对应的横坐标值,否则就是错误的。“2”“3”交点的含义为P=P,此状态下R=r,则“2”“3”交点对应的横坐标一定为 ,若不是则错误。还必须注意的是“2”“3”的交点一定是“3”的最高点,因为R=r时,P最大,若不是这样则此图画错了。
案例 在图7(a)所示电路中,R0是阻值为5 Ω的定值电阻,R1是一滑动变阻器,在其滑片从最右端滑至最左端的过程中,测得电源的路端电压U随电流I的变化图线如图7(b)所示,其中图线上的A、B两点是滑片在变阻器的两个不同端点时分别得到的,讨论以下问题:
问题1 滑片从最右端滑至最左端的过程中,电流表示数如何变化? 分析:滑片从最右端滑至最左端的过程中,由电路结构可知外电阻R变小,由I-R图像可知电流表示数变大。
问题2 滑片从最右端滑至最左端的过程中,电压表示数如何变化?
分析:滑片從最右端滑至最左端的过程中,由电路结构可知外电阻R变小,电压表测量的是外电压,由U-R图像可知电压表示数变小。
问题3 电源电动势和内阻各为多大?
分析:图7(b)给出的是外电压与电流的关系,由图可求得斜率绝对值为20,将图线延长与纵轴相交,可得纵截距为20,由U-I图像的物理含义可知电源电动势E=20 V,内阻r=20 Ω。
问题4 滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?最大输出功率为多少?
分析:由题目所给条件可求得R1的最大阻值为75 Ω,滑片从最右端滑至最左端的过程中,外电阻的变化范围为80 Ω~5 Ω,由P-R图像可知P先变大再变小。调节过程中可以满足R=r,则当R1的有效阻值为15 Ω时,电源输出功率达最大 ,即为5 W。
问题5 若在上述条件下,仅将R0的阻值改为30 Ω,滑片从最右端滑至最左端的过程中,电源的输出功率如何变化?电源的最大输出功率为多少?
分析:滑片从最右端滑至最左端的过程中,外电阻的变化范围为105 Ω~30 Ω,由P-R图像可知P一直变小。由于无法满足R=r,则电源输出功率不可能为,则当R与r最最接近即R1=0 Ω时电源输出功率最大,计算可得为4.8 W。
与闭合电路欧姆定律应用相关的题目较多,题型多种多样,解决这类题目的关键是要搞清电路结构,搞清电表的测量对象,分清已知量与未知量,再运用相应规律求解则可。当然,这也不是一蹴而就的,只有多做、多练、多思考才能达到较好的效果。在解答闭合电路问题时,部分电路欧姆定律和全电路欧姆定律经常交替使用,这就要求我们认清研究对象是全电路还是某一段电路,是这一段电路还是另一段电路,以便选用对应的欧姆定律,并且要注意每一组物理量(I、U或I、E、R、r)的对应关系是对同一研究对象的,不可“张冠李戴”。
参考文献:
[1]徐琪,李飞跃.“闭合电路欧姆定律”教学设计[J].物理教学探讨,2015,33(9):4—8.
[2]吕迎春.闭合电路欧姆定律中图像的应用[J].中学物理,2015,33(6):86—87.
(栏目编辑 邓 磊)