论文部分内容阅读
Agent联盟是多Agent系统中一种重要的合作方式,联盟形成是其研究的关键问题.本文提出一种串行多任务联盟形成中的Agent行为策略,首先论证了Agent合作求解多任务的过程是一个Markov决策过程,然后基于Q-学习求解单个Agent的最优行为策略.实例表明该策略在面向多任务的领域中可以快速、有效地串行形成多个任务求解联盟.