论文部分内容阅读
摘 要:近年来,在高中数学教学中,广大数学教师深入开展以知识整合重建为抓手、以批判性思维为导向的深度学习。数学教师通过设计合适的深度学习目标、加强对数学教学本质的理解、基于数学核心素养建构深度学习课堂、注重培养学生的数学思维等教学策略,进而帮助学生更好地理解和掌握数学的学科思想、学科本质和学科方法,最终达到发展学生数学核心素养的目的。
关键词:深度学习;高中数学;教学效率
近几年来,以知识整合、知识重建为抓手,以批判性思维为导向的深度学习逐渐走进基础教育领域,广大中学数学教师接受并采纳了深度学习的课堂教学模式,深度学习已经成为当前课堂教学改革的新热点、新亮点。如何运用深度学习来提高高中数学课堂教学的高效性?如何利用深度学习的教学方式来发展学生的数学核心素养?已成为摆在广大高中数学教师面前的重要理论研究和实践研究的重大课题。
一、 深度学习的由来及其内涵
深度学习最早是由美国人工神经网络研究专家于20世纪70年代提出的一种深层次的学习方式,它强调理论联系生产、生活实际,运用人类已有的理论知识来解决实际诸多问题的能力。近年来随着云计算、大数据、人工智能等信息技术的飞速发展,国内教育技术专家将信息技术与学科教学进行深度融合,将深度学习理论广泛运用于学科课堂教学之中。
基础教育领域中的深度学习,就是指教师通过创设课堂教学情境,引导学生利用课本理论知识解决生产、生活中的实际问题,在解决问题的过程中体会其中蕴含的数学思想和数学方法,完成理论知识的内化和迁移,达到举一反三、触类旁通的目的,进而发展学生核心素养的一种学习方式。它强调,学生要敢于直面问题,要不畏权威,勇于向教材和专家挑战;学生要端正学习态度,刻苦学习,深入思考,要善于运用已有知识解释新知识、解决新问题。
二、 在高中数学课堂教学中巧用深度学习策略
相对于初中数学而言,高中数学知识的深度、广度、难度大大增加,教材编写者注重数学知识在生产生活中的实际应用,要求学生要善于运用数学教材中的理论知识、数学方法、数学思想解决工农业生产、国防建设、信息技术以及人类社会活动、家庭生活中的实际问题。因此,如何运用深度学习来提高高中数学课堂教学的有效性?如何利用深度学习的教学方式来发展学生的数学核心素养?成为高中数学教师的重大研究课题。笔者在课堂教学实践中对深度学习做了初步的研究,取得了一定的成果,感悟分享如下,仅供高中数学教师参考。
(一)给学生提出具体的学习目标,有效开展深度学习
如何开展高效的深度学习?教师通过制定具体的学习目标引导学生开展深度学习尤其重要。首先,教师要深入学习2017年新版《普通高中数学新课程标准》,掌握数学核心素养目标,明确课本知识结构的整体性,对课本知识从点、线、面三个层面进行适当的补充和拓展,帮助学生将教材中分散的知识点重构成系统的知识网络,充分运用概念图、知识网络图、思维导图等有序开展深度学习;正确处理好课时教学、章节教学、单元教学和模块教学的关系,由简单到复杂、由浅到深有效开展深度学习;要根据所教班级学生的年龄特点、心理特点、学习特点和学生已有的知识,对教材内容进行适当的整合调整,有效利用分层教学方式,让不同层次的学生都能学有所获,学习成绩得到进步,学习信心得到提升。其次,教师要抓住教材中的大概念、中心概念、核心概念,围绕骨干知识、核心知识进行深度学习。教师要善于传授有效的数学学习方法,充分利用数学课本中的数学概念、符号、公式、图形与定理等突出重点知识,采用多媒体设备突破难点知识。数学教师还要善于培养学生的数学思想、数学思维,帮助学生掌握有效的数学解题方法。要完成上述目标,教师的课堂教学语言就要做到准确、精炼、简洁,要通俗易懂、言简意赅。所以,教师要不断钻研课本教材,深入研究新课程标准,努力学习教育教学理论,并在教学实践中不断总结完善,形成自己特有的教学风格。
例如,在学习高中数学“椭圆的简单几何性质”这部分内容之前,笔者做了一次问卷调查,对学生的知识储备进行初步的了解。调查结果显示,绝大多数学生对椭圆的概念、圆的方程已经具有初步的认知,对椭圆和圆有了一定的知识储备,为本节课的深入学习奠定了很好的知识基础。此外,调查还发现,学生在学习完成“幂函数”内容后,不仅掌握了“幂函数”的定义概念、解题方法和技巧,还能亲手制作“幂函数”图形,学生的这些知识储备和解题技巧为“椭圆的简单几何性质”新知识的学习打下了良好的知识基础。
(二)培养学生的数学思想,提高深度学习效率
任何一门学科都有其独特的学科思想和学科方法,高中数学学科也不例外。高中数学中的概念、定理都来源于实践,是人类在改造自然的生产、生活实践中总结出来的理论知识,是一门为人类社会进步发展服务的学科。因此,学生要想理解数学学科的本质,就必须深入研究数学学科发展历史,体会数学理论知识形成的过程和数学家探索真理的方法、得失,要做到以史为鉴,才能提高学习效率,最终达到学以致用的目的。
高中数学学科的深度学习其实质就是由表及里、由淺入深、举一反三、触类旁通、理论联系实际的多维度的综合性学习过程,它特别倡导在自主学习基础上的富有个性化的探究性学习,特别重视数学课堂教学中的生生互动、师生互动和师生交流。例如,笔者在教学“复数”内容时,倡导学生各抒己见,提出自己特有的解法:
【例】 已知复数z的模为2,求|z-i|的最大值。
解法一(代数法):设z=x yi(x,y∈R),x2 y2=4。
|z-i|=x2 (y-1)2=5-2y。
∵|y|≤2,∴y=-2时,|z-i|max=3。
解法二(三角法)、解法三(几何法)、解法四(运用模的性质):略(限于篇幅,不一一阐述)。
富有个性化的深度学习,展示出学生不同的学习方法和解题技巧,在交流互动中提升,能有效发展学生的数学核心素养,最终达到提高课堂教学质量的目的。 (三)利用数学研究性学习,促进深度学习的深入开展
研究学习也是学生进行深度学习的最有效方式之一,教师引导学生提出问题(课题),自主设计研究方案,小组合作完成探究任务。研究性学习活动是提高数学学习效率的最有效的方法之一,教师要根据新课程标准、高考要求和学生特点,适时开展有效的研究性学习活动。例如,在学习“正弦定理”时,笔者根据生活情景这样导入新课题:“从生活经验可知,我们测量一些不可以攀爬的物体高度时,主要通过三角形的边角关系测量。现在我们共同探讨三角形边与角的关系。学习本节课内容之前,我们先回忆在一个直角三角形中三角形的三条边与角有何关系。”学生带着问题进行自主学习,开展小组讨论。
在初中,已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c,从而在直角三角形ABC中,asinA=bsinB=csinC。
然后,笔者接着提问:“根据刚才给出的直角三角形边与角的关系,你能看出它们之间的联系吗?这种联系适用于其他的三角形吗?”此时学生感到困惑,笔者引导学生做进一步探究:分为锐角三角形和钝角三角形探究:
如圖2,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB,同理可得csinC=bsinB,从而asinA=bsinB=csinC。
学生课后自己推导:当△ABC是钝角三角形时,以上关系式仍然成立。
经研究性学习,学生可推导出正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
在研究性学习过程中,学生通过角色扮演、小组讨论、全班交流,每位学生都获得了进步,有效地完成了学习任务,提高了课堂教学效率。
总之,在高中数学教学中开展深度学习,不仅能激发学生的学习兴趣,提高解题技巧,提升学习效率,还能培养学生的数学思想、数学思维,进而培养学生不畏权威,勇于挑战的数学精神,最终达到发展学生数学核心素养的目标。
参考文献:
[1]任香玲.基于深度学习的高中数学教学策略[J].求知导刊,2020(24).
[2]蔡佳佳.基于STEM教育理念下6E教学模式的实践:以《学前心理学》为例[J].陕西学前师范学院学报,2020(3).
[3]王国坚.浅析如何培养中学生的数学核心素养[J].考试周刊,2016(96).
作者简介:
邱金繁,福建省南平市,福建省邵武第一中学。
关键词:深度学习;高中数学;教学效率
近几年来,以知识整合、知识重建为抓手,以批判性思维为导向的深度学习逐渐走进基础教育领域,广大中学数学教师接受并采纳了深度学习的课堂教学模式,深度学习已经成为当前课堂教学改革的新热点、新亮点。如何运用深度学习来提高高中数学课堂教学的高效性?如何利用深度学习的教学方式来发展学生的数学核心素养?已成为摆在广大高中数学教师面前的重要理论研究和实践研究的重大课题。
一、 深度学习的由来及其内涵
深度学习最早是由美国人工神经网络研究专家于20世纪70年代提出的一种深层次的学习方式,它强调理论联系生产、生活实际,运用人类已有的理论知识来解决实际诸多问题的能力。近年来随着云计算、大数据、人工智能等信息技术的飞速发展,国内教育技术专家将信息技术与学科教学进行深度融合,将深度学习理论广泛运用于学科课堂教学之中。
基础教育领域中的深度学习,就是指教师通过创设课堂教学情境,引导学生利用课本理论知识解决生产、生活中的实际问题,在解决问题的过程中体会其中蕴含的数学思想和数学方法,完成理论知识的内化和迁移,达到举一反三、触类旁通的目的,进而发展学生核心素养的一种学习方式。它强调,学生要敢于直面问题,要不畏权威,勇于向教材和专家挑战;学生要端正学习态度,刻苦学习,深入思考,要善于运用已有知识解释新知识、解决新问题。
二、 在高中数学课堂教学中巧用深度学习策略
相对于初中数学而言,高中数学知识的深度、广度、难度大大增加,教材编写者注重数学知识在生产生活中的实际应用,要求学生要善于运用数学教材中的理论知识、数学方法、数学思想解决工农业生产、国防建设、信息技术以及人类社会活动、家庭生活中的实际问题。因此,如何运用深度学习来提高高中数学课堂教学的有效性?如何利用深度学习的教学方式来发展学生的数学核心素养?成为高中数学教师的重大研究课题。笔者在课堂教学实践中对深度学习做了初步的研究,取得了一定的成果,感悟分享如下,仅供高中数学教师参考。
(一)给学生提出具体的学习目标,有效开展深度学习
如何开展高效的深度学习?教师通过制定具体的学习目标引导学生开展深度学习尤其重要。首先,教师要深入学习2017年新版《普通高中数学新课程标准》,掌握数学核心素养目标,明确课本知识结构的整体性,对课本知识从点、线、面三个层面进行适当的补充和拓展,帮助学生将教材中分散的知识点重构成系统的知识网络,充分运用概念图、知识网络图、思维导图等有序开展深度学习;正确处理好课时教学、章节教学、单元教学和模块教学的关系,由简单到复杂、由浅到深有效开展深度学习;要根据所教班级学生的年龄特点、心理特点、学习特点和学生已有的知识,对教材内容进行适当的整合调整,有效利用分层教学方式,让不同层次的学生都能学有所获,学习成绩得到进步,学习信心得到提升。其次,教师要抓住教材中的大概念、中心概念、核心概念,围绕骨干知识、核心知识进行深度学习。教师要善于传授有效的数学学习方法,充分利用数学课本中的数学概念、符号、公式、图形与定理等突出重点知识,采用多媒体设备突破难点知识。数学教师还要善于培养学生的数学思想、数学思维,帮助学生掌握有效的数学解题方法。要完成上述目标,教师的课堂教学语言就要做到准确、精炼、简洁,要通俗易懂、言简意赅。所以,教师要不断钻研课本教材,深入研究新课程标准,努力学习教育教学理论,并在教学实践中不断总结完善,形成自己特有的教学风格。
例如,在学习高中数学“椭圆的简单几何性质”这部分内容之前,笔者做了一次问卷调查,对学生的知识储备进行初步的了解。调查结果显示,绝大多数学生对椭圆的概念、圆的方程已经具有初步的认知,对椭圆和圆有了一定的知识储备,为本节课的深入学习奠定了很好的知识基础。此外,调查还发现,学生在学习完成“幂函数”内容后,不仅掌握了“幂函数”的定义概念、解题方法和技巧,还能亲手制作“幂函数”图形,学生的这些知识储备和解题技巧为“椭圆的简单几何性质”新知识的学习打下了良好的知识基础。
(二)培养学生的数学思想,提高深度学习效率
任何一门学科都有其独特的学科思想和学科方法,高中数学学科也不例外。高中数学中的概念、定理都来源于实践,是人类在改造自然的生产、生活实践中总结出来的理论知识,是一门为人类社会进步发展服务的学科。因此,学生要想理解数学学科的本质,就必须深入研究数学学科发展历史,体会数学理论知识形成的过程和数学家探索真理的方法、得失,要做到以史为鉴,才能提高学习效率,最终达到学以致用的目的。
高中数学学科的深度学习其实质就是由表及里、由淺入深、举一反三、触类旁通、理论联系实际的多维度的综合性学习过程,它特别倡导在自主学习基础上的富有个性化的探究性学习,特别重视数学课堂教学中的生生互动、师生互动和师生交流。例如,笔者在教学“复数”内容时,倡导学生各抒己见,提出自己特有的解法:
【例】 已知复数z的模为2,求|z-i|的最大值。
解法一(代数法):设z=x yi(x,y∈R),x2 y2=4。
|z-i|=x2 (y-1)2=5-2y。
∵|y|≤2,∴y=-2时,|z-i|max=3。
解法二(三角法)、解法三(几何法)、解法四(运用模的性质):略(限于篇幅,不一一阐述)。
富有个性化的深度学习,展示出学生不同的学习方法和解题技巧,在交流互动中提升,能有效发展学生的数学核心素养,最终达到提高课堂教学质量的目的。 (三)利用数学研究性学习,促进深度学习的深入开展
研究学习也是学生进行深度学习的最有效方式之一,教师引导学生提出问题(课题),自主设计研究方案,小组合作完成探究任务。研究性学习活动是提高数学学习效率的最有效的方法之一,教师要根据新课程标准、高考要求和学生特点,适时开展有效的研究性学习活动。例如,在学习“正弦定理”时,笔者根据生活情景这样导入新课题:“从生活经验可知,我们测量一些不可以攀爬的物体高度时,主要通过三角形的边角关系测量。现在我们共同探讨三角形边与角的关系。学习本节课内容之前,我们先回忆在一个直角三角形中三角形的三条边与角有何关系。”学生带着问题进行自主学习,开展小组讨论。
在初中,已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c,从而在直角三角形ABC中,asinA=bsinB=csinC。
然后,笔者接着提问:“根据刚才给出的直角三角形边与角的关系,你能看出它们之间的联系吗?这种联系适用于其他的三角形吗?”此时学生感到困惑,笔者引导学生做进一步探究:分为锐角三角形和钝角三角形探究:
如圖2,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB,同理可得csinC=bsinB,从而asinA=bsinB=csinC。
学生课后自己推导:当△ABC是钝角三角形时,以上关系式仍然成立。
经研究性学习,学生可推导出正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
在研究性学习过程中,学生通过角色扮演、小组讨论、全班交流,每位学生都获得了进步,有效地完成了学习任务,提高了课堂教学效率。
总之,在高中数学教学中开展深度学习,不仅能激发学生的学习兴趣,提高解题技巧,提升学习效率,还能培养学生的数学思想、数学思维,进而培养学生不畏权威,勇于挑战的数学精神,最终达到发展学生数学核心素养的目标。
参考文献:
[1]任香玲.基于深度学习的高中数学教学策略[J].求知导刊,2020(24).
[2]蔡佳佳.基于STEM教育理念下6E教学模式的实践:以《学前心理学》为例[J].陕西学前师范学院学报,2020(3).
[3]王国坚.浅析如何培养中学生的数学核心素养[J].考试周刊,2016(96).
作者简介:
邱金繁,福建省南平市,福建省邵武第一中学。