论文部分内容阅读
摘 要:新课标的论述是“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”这句话清晰的表明了我们可以利用几何直观描述分析问题,把复杂的数学问题变得简明、形象,借助几何直观探索解决问题的思路。所以,几何直观可以帮助我们有效的理解计算的算理。那么如何发挥几何直观对理解算理的作用,就是一个值得深究的问题。本文从“几何直观”对小学数学教学的角度进行探讨,希望能不断提高教学质量。
关键词:几何直观 教学 小学数学
一、几何直观在教学中的作用
(1)运用感性材料,建立表象
空间观念指的是物体的大小、形状、方向、距离在人脑中留下的既直觉又有一些概括性的形象。表象是具有感知的形象在头脑中的保持,它是具体感知向概念、思维过渡的重要环节。没有形成清晰的表象就不能很好地进行思维活动,没有丰富的表象储备,表象的重新组合或再造而产生新的表象的过程将会困难,培养初步的空间想象能力也就无从说起。小学教材的几何知识(系统学习时)的安排是:线→面→体,即一维空间→二维空间→三维空间;从图形来说是简单单一→复杂组合;从计算来说是长度→面积→体积.无论哪一方面,都是以大量表象的内化,形象思维活动向抽象思维活动转化,揭示出概念的本质属性而得到概念,形成初步的空间想象能力,发展思维的。
小学生从对几何形体的感知中获得了印象,并保留在头脑中成为表象。表象的重新组合或再造的心理过程,是学生空间概念的重要基础。教学中应注意以下两个方面:
1.重视启蒙阶段对几何图形的观察
通常教材中几何知识是结合认数与计算编排的,一年级集合认数出现了三角形、正方形、立方形以及圆等图形和直观教具,出现这些图形不仅仅只是为了认数,同时也是为了培养学生初步空间观念。一年级有这么一个习题:要求学生在下图中找三角形、圆形、正方形的个数,这个集合图里的图形,排列杂乱,大小不一,既有标准图形,又有变式图形。这时要好好指导学生观察,然后让学生分类找出,从而使学生初步建立起三角形、正方形、圆形等的表象。
2.充分利用几何直观教具
在教几何图形时,一定要充分运用几何图形的直观教具,让学生仔细观察。使其感知并获得具体鲜明的形象,形成图形的表象;另一方面,表象常常是概括了许多感知形象的,所以表象又具有概括性特征。例如:学生对三角形的知觉,可在认识角的大小、边的长短、三边上的高、内角和、稳定性、对称性等的同时,出示各種不同类型的三角图形、模型等直观教具,让学生亲手量一量、画一画、拼一拼,使学生建立起一个完整的三角形表象,并为建立三角形概念完成过渡。
(2)创造条件,形成再造想象
表象的重新组合、成为新的表象,就是想象。如果这种想象是根据别人的语言文字描述或图形、模型想出来的,这种想象就是再造想象。再造想象在培养学生初步空间概念中具有重要意义。
1.通过实际操作,促进学生想象
动手操作可以丰富学生的感性认识.在操作过程中,引导学生观察、比较、分析、综合,发展他们的思维能力。生理学研究表明:双手动作时,在脑与手之间,信息通过两条双向的通道高速地传导着。在手脑并用时,大脑的创造性有关区域受刺激而活跃起来,手使脑的功能得到发展,脑使手的技能得到训练。在操作中,操作的顺序性又可促使语言的条理化、完整化,同时使思维得到发展。
2.渗透几何思想,丰富学生想象
如讲完梯形之后,我们对四边形先进行归类复习,可运用让学生边想边填图的方式,从而渗透正方形集合是长方形集合的子集合,长方形集合又是平行四边形的子集合,平行四边形集合和梯形集合又是四边形集合的子集合的集合思想。通过这样的复习和填图,学生对四边形就能建立起一个概念系统,这样的想象就更丰富、更全面了。
(3)积极引导,培养创造想象
创造想象是新表象的创造,小学生学习的初步的几何知识,也需要创造想象。教学中,一定要积极引导,培养学生的创造想象力,以促进初步空间观念的迅速形成。
首先要培养学生具有独立思想的自觉性。如:我们在教完梯形的面积之后,要学生计算做一个加料斗要用多少铁板。学生的立体图形知识很贫乏,虽有一图,但看不懂,也想象不出这是一个什么样的形状,这时,教师应拿出一个加料斗模型让学生观察,然后让学生用硬纸做一个加料斗,再让学生独自想一想。计算做这个加料斗要多少材料的关键是什么?学生通过看、做、想,逐渐懂得它是由四块相等的梯形组成的。因此。求出四个相等梯形繁荣面积,就是整个加料斗所需的材料了。
其次要鼓励学生敢于进行捏造性想象。如圆面积求法,教材上采用了分割成16块相等的扇面,拼成近似长方形,推导出“圆面积= ”这一公式。如果把每一个扇形不断地分割下去,弧越来越短,会变成什么形状呢?让学生大胆想象,学生就会提出把圆分成近似三角形来推导圆面积,这个推导方法就是一种“创造性”的思想过程。
几何直观能够启迪思路,帮助理解。因此,借助几何直观学习和理解数学,是数学学习中的重要方向。甚至可以说,只有做到直观上的理解,才是真正的理解。几何直观抓住了“形”与“理”之间的联系,以“形”的直观表达“理”,有效实现算理直观,促进学生“清方法,明算理”。总之,几何直观是帮助学生理解算理的一种重要方式,在日常教学中应当引起我们的足够重视。
参考文献
关键词:几何直观 教学 小学数学
一、几何直观在教学中的作用
(1)运用感性材料,建立表象
空间观念指的是物体的大小、形状、方向、距离在人脑中留下的既直觉又有一些概括性的形象。表象是具有感知的形象在头脑中的保持,它是具体感知向概念、思维过渡的重要环节。没有形成清晰的表象就不能很好地进行思维活动,没有丰富的表象储备,表象的重新组合或再造而产生新的表象的过程将会困难,培养初步的空间想象能力也就无从说起。小学教材的几何知识(系统学习时)的安排是:线→面→体,即一维空间→二维空间→三维空间;从图形来说是简单单一→复杂组合;从计算来说是长度→面积→体积.无论哪一方面,都是以大量表象的内化,形象思维活动向抽象思维活动转化,揭示出概念的本质属性而得到概念,形成初步的空间想象能力,发展思维的。
小学生从对几何形体的感知中获得了印象,并保留在头脑中成为表象。表象的重新组合或再造的心理过程,是学生空间概念的重要基础。教学中应注意以下两个方面:
1.重视启蒙阶段对几何图形的观察
通常教材中几何知识是结合认数与计算编排的,一年级集合认数出现了三角形、正方形、立方形以及圆等图形和直观教具,出现这些图形不仅仅只是为了认数,同时也是为了培养学生初步空间观念。一年级有这么一个习题:要求学生在下图中找三角形、圆形、正方形的个数,这个集合图里的图形,排列杂乱,大小不一,既有标准图形,又有变式图形。这时要好好指导学生观察,然后让学生分类找出,从而使学生初步建立起三角形、正方形、圆形等的表象。
2.充分利用几何直观教具
在教几何图形时,一定要充分运用几何图形的直观教具,让学生仔细观察。使其感知并获得具体鲜明的形象,形成图形的表象;另一方面,表象常常是概括了许多感知形象的,所以表象又具有概括性特征。例如:学生对三角形的知觉,可在认识角的大小、边的长短、三边上的高、内角和、稳定性、对称性等的同时,出示各種不同类型的三角图形、模型等直观教具,让学生亲手量一量、画一画、拼一拼,使学生建立起一个完整的三角形表象,并为建立三角形概念完成过渡。
(2)创造条件,形成再造想象
表象的重新组合、成为新的表象,就是想象。如果这种想象是根据别人的语言文字描述或图形、模型想出来的,这种想象就是再造想象。再造想象在培养学生初步空间概念中具有重要意义。
1.通过实际操作,促进学生想象
动手操作可以丰富学生的感性认识.在操作过程中,引导学生观察、比较、分析、综合,发展他们的思维能力。生理学研究表明:双手动作时,在脑与手之间,信息通过两条双向的通道高速地传导着。在手脑并用时,大脑的创造性有关区域受刺激而活跃起来,手使脑的功能得到发展,脑使手的技能得到训练。在操作中,操作的顺序性又可促使语言的条理化、完整化,同时使思维得到发展。
2.渗透几何思想,丰富学生想象
如讲完梯形之后,我们对四边形先进行归类复习,可运用让学生边想边填图的方式,从而渗透正方形集合是长方形集合的子集合,长方形集合又是平行四边形的子集合,平行四边形集合和梯形集合又是四边形集合的子集合的集合思想。通过这样的复习和填图,学生对四边形就能建立起一个概念系统,这样的想象就更丰富、更全面了。
(3)积极引导,培养创造想象
创造想象是新表象的创造,小学生学习的初步的几何知识,也需要创造想象。教学中,一定要积极引导,培养学生的创造想象力,以促进初步空间观念的迅速形成。
首先要培养学生具有独立思想的自觉性。如:我们在教完梯形的面积之后,要学生计算做一个加料斗要用多少铁板。学生的立体图形知识很贫乏,虽有一图,但看不懂,也想象不出这是一个什么样的形状,这时,教师应拿出一个加料斗模型让学生观察,然后让学生用硬纸做一个加料斗,再让学生独自想一想。计算做这个加料斗要多少材料的关键是什么?学生通过看、做、想,逐渐懂得它是由四块相等的梯形组成的。因此。求出四个相等梯形繁荣面积,就是整个加料斗所需的材料了。
其次要鼓励学生敢于进行捏造性想象。如圆面积求法,教材上采用了分割成16块相等的扇面,拼成近似长方形,推导出“圆面积= ”这一公式。如果把每一个扇形不断地分割下去,弧越来越短,会变成什么形状呢?让学生大胆想象,学生就会提出把圆分成近似三角形来推导圆面积,这个推导方法就是一种“创造性”的思想过程。
几何直观能够启迪思路,帮助理解。因此,借助几何直观学习和理解数学,是数学学习中的重要方向。甚至可以说,只有做到直观上的理解,才是真正的理解。几何直观抓住了“形”与“理”之间的联系,以“形”的直观表达“理”,有效实现算理直观,促进学生“清方法,明算理”。总之,几何直观是帮助学生理解算理的一种重要方式,在日常教学中应当引起我们的足够重视。
参考文献
[1]张红.让知识成为学生的真正营养——“除数是小数的除法”教学与思考.小学教学.2007.09
[2]沈惠芬.对计算教学的再认识.——解读特级教师丁杭缨“笔算乘法”一课.小学教学.2008.03
[3]杨颖.数形结合自然建构突破难点——“乘法分配率”教学片断与思考.小学教学.2012.03