新型平衡障碍康复机器人关键技术研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ws715203sw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着老年人口数量的增加,平衡障碍的发病率呈上升趋势。许多老年人由于头晕而摔倒,头晕导致平衡失调,存在很严重的安全隐患问题。平衡失调问题目前是医学界人士关注的焦点,是医学领域亟待解决的问题。我国平衡失调患者逐年增多。但医疗资源十分有限,康复训练方法单一,技术落后。本课题以平衡障碍患者康复训练机器人为研究对象,开展研发的相关工作。人体平衡障碍的成因很大一部分原因是运动感知系统异常,尤其是前庭感知系统功能的丧失或者退化。因此该机器人的首要功能就是通过运动模拟帮助患者训练,能够带动患者进行多种多样康复运动,不断刺激患者产生前庭感觉与深感觉,从而引导大脑主动整合,提升各运动感知器官的能力。另一个功能是利用该机器人创造的失稳仿真环境获取人体平衡运动信息,对患者的平衡障碍类型与程度进行评估。本论文从帮助平衡障碍患者进行康复训练这个主要功能出发,基于“大负载,高速高加速”的特性指标,从总体方案设计开始进行研发。本课题首次将一种新型6-SSP构型的并联机器人应用于医疗领域的平衡障碍康复训练中,解决了传统stewart并联平台虽然具有承载能力强的特性但无法进行高速高加速运动的缺陷,是康复训练机器人领域的一次突破与进步。本文还对新型的6-SSP并联机器人进行全方位的特性分析,包括运动特性、动力特性、结构特性和参数寻优等,目的就是为了更好的了解该机器人的特性以提升性能。研究洗出控制算法。并联机器人为了在有限的运动行程内实现各种各样的运动,离不开洗出控制算法。本课题详细研究了洗出控制算法各通道的滤波器参数对于运动模拟效果的影响。对于经典洗出算法的局限之处,采用多目标遗传算法MOGA算法对滤波器参数进行优化,找到最适合本应用场景的参数,并提高运动模拟的逼真程度。最后搭建起实验平台样机,观察实验平台在经过优化的洗出算法的控制下的运动情况,并与在仿真软件中的仿真运动情况进行比较,验证算法的可行性。
其他文献
为实现机器人的自主运动,针对室内机器人的定位与路径规划问题进行了研究。由于GPS信号在室内情况下会失效,在室内情况下选取其他传感器来进行机器人的定位,激光雷达与相机两种传感器都包含丰富的信息,同时激光雷达和相机都存在一定的局限性,多线激光雷达价格昂贵,性价比不高,而单线激光雷达只能测量一个水平面内的障碍物信息,信息不够全面,而深度相机左右范围较小,建图较慢并且精度更低,本文采用深度相机与激光雷达融
本文基于螺旋理论建立了多自由度机械臂的运动学与动力学模型,设计模糊控制系统以逼近机械臂动力学模型中的不确定性,同时设计自适应滑模控制律以跟踪期望行为并证明控制系统的稳定性,以六自由度UR5机械臂为仿真对象,实现了各个关节的期望位置与速度跟踪。本文从李群李代数理论出发,研究了在刚体运动中最重要的两个李群——特殊正交群和特殊欧几里得群及其李代数并给出其定义、性质等,再利用指数积(Product of
气动连续体机器人是一种没有刚性关节、由柔顺性材料组成的机器人,其具有极高的灵活性与操纵能力,对于复杂结构环境具有很强的适应能力,并且可以进行非常安全的人机交互。本文研制的机械臂属于气动连续体机器人的一种,作为一种执行器,可以应用于工业、农业、家庭环境与护理等应用场景下的操作辅助、抓取搬运等任务。本文开展了对于气动连续体机械臂的研制以及控制方法的研究,设计并制作了机械臂样机,提高了机械臂运动的位姿精
由于足式机器人与环境之间通过离散的落足点运动,相比于其他形式的移动机器人拥有更好的灵活性和适应性,这就注定足式机器人在一些相对复杂环境下运动拥有更大的优势。从上世纪80年代第一款单足跳跃机器人到后来Boston Dynamics推出Big Dog四足机器人,对足式机器人领域的研究做出了重大贡献,同时其广阔前景也吸引了众多学者投入到相关研究工作中,国内对于四足机器人的研究起步较晚,主要集中在863计
柔性外骨骼是一种新型的穿戴式智能机电系统,是外骨骼系统领域研究的一个热点方向。相较于传统的刚性外骨骼,由柔索、气动肌肉等柔性部件驱动的柔性外骨骼能够更好地适应人体特殊的解剖结构,具有运动自由度高、机械系统重量轻、人机交互性能好等优势,在航天、医疗、军用、工业等多个领域均有十分广泛的应用前景。本文从外骨骼机械系统设计、肌声信号采集与特征提取、人体关节力矩辨识等角度对柔性外骨骼系统展开研究。本文首先根
机电伺服系统的动态跟踪精度受到结构不确定性(参数波动)和非结构不确定性(未建模动态、外部干扰、非线性摩擦)的影响。自适应鲁棒控制是一种解决不确定性控制问题的先进控制方法,在很多领域都得到了应用,然而当动态跟踪精度要求较高时,该方法由于对扰动辨识精度不够精确,导致系统的动态跟踪精度不理想。扩张状态观测器在自抗扰控制中,用于观测扰动。本文以机电伺服系统为研究背景,提出一种基于扩张状态观测器的自适应鲁棒
随着永磁同步电机(PMSM)驱动系统在家用电器领域的广泛应用,对高可靠性与低成本化的需求日益增加。传统的矢量控制系统需要三个相电流传感器以及一个固定在电机转子轴端的位置传感器进行闭环矢量控制,过多的传感器不仅增加了系统的成本,传感器预留位也增加了系统的体积,并且降低了驱动系统在恶劣工况下运行鲁棒性。为了提高家用电器的市场竞争力,单电阻电流重构技术受到了广泛重视。与此同时,不依赖位置传感器获取转子位
核聚变能源具有储量丰富和能源本身清洁可持续等诸多优点,具有较高的军事与社会价值。激光约束聚变是实现受控核聚变的主要方式之一,腔靶作为激光聚变实验的主要操作器件,其制造与装配精度是影响实验成功的关键因素。目前的腔靶装配方式多为人工装配或半自动化微装配系统装配,装配效率不高,且灵活性较差,为实现激光聚变腔靶的高效灵活装配,本文对双操作手协调装配腔靶的运动规划开展相关研究。首先,通过对激光聚变腔靶对接装
工业4.0的提出,在全球范围引发了一场以智能制造为核心的工业革命。智能维护是智能制造的重要组成部分,刀具的健康状态监测是智能维护的重点研究对象,如果刀具磨损超过相应指标却未及时更换,则会造成时间经济等方面的损失浪费,由此可见,预测加工过程中刀具的磨损量有重要意义与价值。目前车间内可以获得数据越来越多,数据呈现多元异构的特性,而传统刀具健康监测技术所采用的浅层机器学习难以将其全面利用。此外,在实际加
在全球提高制造业的自动化水平背景下,机器人通过传感器自动识别焊缝的位置完成焊接对提高焊接的自动化水平有着重要的意义。本文提出了一种基于立体视觉对焊缝进行三维重建并规划机器人焊接路径的方法。该方法适用于各种尺寸,各种角度放置的V型对接坡口焊接工件,对三维重建过程中噪声的抗干扰能力强,鲁棒性好。本文首先进行了硬件设备搭建和点云采集工作。采用了Kinect深度相机对工件进行三维建模,并以点云的方式输出,