C<'(1)>(X)上的等距算子的表示

来源 :南开大学 | 被引量 : 0次 | 上传用户:aini826611
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经典的Banach-Stone定理讲述了从赋范线性空间C(X)到赋范线性空间C(Y)上的满的等距线性算子可以由X和y之间的同胚映射导出,其中X,Y为紧致空间,这一结论已经被推广到很多其它的Banach空间上。   本文对线性空间C(1)(X)引进了一种新的范数,这种范数是由R2上的正六边形导出的,在这种范数下我们证明了赋范线性空间C(1)(X)上的满的线性等距算子可以由X上的同胚映射表出,其中X为实数域R上的连通紧子集,希望本文所用的方法对于类似由单位球为正八边形,甚至对于正2n边形所引进的范数同样适用。
其他文献
本学位论文研究了有限反射群,分为三章: 第一章,主要介绍了本论文的一些概念。我们介绍了反射群和Weyl群的相关知识,并指出了有限Coxeter群与Weyl群之间的关系。最后我们还介
广义逆理论一直是矩阵理论中活跃的研究领域.这不仅是因为它自身有很高的理论价值,更重要的是它在数理统计、系统理论、有限马尔可夫过程、差分方程组、人口增长模型和最优化
本文讨论了半线性抛物型积分微分方程的半离散有限体积元方法。文章首先给出了半线性抛物型积分微分方程的弱形式,然后对空间进行了三角剖分,构造了线性有限元空间,建立了有限体
孤立子方程作为无穷维可积系统,与有限维可积(Hamilton)系统之间的联系也一直是人们感兴趣的研究课题. 著名数学家Ablowitz和Flaschka曾猜想:孤立子方程可通过某种约化得到有限维
学位
脉冲现象和时滞现象在现代科技各领域的实际问题中是普遍存在的.脉冲微分方程和时滞微分方程比没有脉冲和时滞的微分方程能更真实地反映这些发展过程,它最突出的特点是能够充
Buhagiar和Miwa定义了仿紧映射,次仿紧映射,亚紧映射和集式正规映射,并在一定分离公理条件下给出了这些映射的一些等价刻划。陈海燕又利用闭包保持闭加细,内核保持加细进一步刻划
随着网络的发展,电子商务的优势渐现,但在支付环节,交易双方受到了传统货币对交易场所的限制,货币电子化成为电子商务发展的必然趋势。   作为传统现金的电子等价物,电子现金具
有限群论是群论的基础部分,超可解群是群论中一类比较常见的群,也是一类极其重要的群. 本文目的就是研究这一类群.1982年.武汉大学数学系张远达教授从群的基本性质、群阶对超可
本文主要是在实指数Dirichlet级数研究的基础上,借助整函数和Dirich-let级数经典理论与方法,研究广义Dirichlet级数所表示的整函数的增长性质,推广了实指数Dirichlet级数的相关