论文部分内容阅读
传统K-Modes算法的一个主要问题是属性选择问题。K-Modes算法在聚类过程中对每一个属性都同等看待,而在实际应用中,很多数据集仅有几个重要属性对聚类起作用。为了考虑不同属性对聚类的不同影响,将K-Modes聚类算法与属性权重的最优化结合起来,提出一种属性自动赋权的FW-K-Modes算法。该算法不仅可以提高传统K-Modes聚类算法的聚类精度,还能分析各维属性对聚类的贡献程度,实现关键属性的选择。对多个UCI数据集进行了实验,验证了该算法的优良特性。