以小见大、构建和谐寝室文化

来源 :新教育时代电子杂志(教师版) | 被引量 : 0次 | 上传用户:jettey
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
寝室文化在大学已不是个新兴事物了,但对一个普通的农村初级中学,对于大部分学生的家庭是远在百十公里之外的学校还是一个极待探究的课题.对于一个农村寄宿制中学的校园文化建设,寝室文化的构建必将是重中这重.从小小的一个不显眼的宿舍楼内可以折射出校园文化建设的全部.
其他文献
我们考虑高维格点Zd上的广义Frenkel-Kcmtorova(F-K)模型,它描述了在周期势能环境下的d维晶体颗粒之间大范围非线性的亲合作用。本文,我们利用最大-最小值原理,反可积极限法,梯度
Hamilton系统的保结构算法研究在科学家们的不懈努力下已经硕果累累.对于Poisson流形上的广义Hamilton系统,目前人们关于其生成函数方法的研究还只能是针对一些特殊情形.本文
本文主要研究几种简单图的边理想的分次Betti数、投射维数和正则度,如共边的星图、轮图以及去轮辐的图等。对于这些图,我们可以给出它的边理想的一个分裂的分解I=J+K,从而利用
信号处理领域的关键技术之一是数字滤波器,其中广为采用的是线性相位完全重构滤波器组(LPPRFB)。这类数字系统有效抑制了信号重构时的相位扭曲与边界震荡现象,同时提供了无损
本文在四元数除环上研究了两个矩阵乘积的广义逆的前序率问题,得到了一系列等价性条件,这些等价性条件在矩阵运算中有着非常重要的作用。这些结果进一步丰富和发展了四元数矩阵
鞍点问题广泛存在于科学与工程计算中,解决此类问题要用到预处理,目前主要有不精确块对角与块上三角阵预处理子,构造不精确三角预处理子要用到不完全分解技术,ILUT是其中一种
本文主要讨论了两大类拟线性椭圆方程解的边界行为。在第一类情况中,主要讨论了在有界光滑区域Ω中,其中Ω()RN,N>1,拟线性椭圆方程的解的估计。这里1≤γ≤3,m>1.在满足边界
研究在外加磁场和有磁化强度存在的情况下一种流体在刚硬多孔介质中的渗透定律,这一流体是稳态、不可压缩、缓慢、粘性、牛顿铁磁流体。根据孔尺寸的扩大比率流,得到了磁场下
随着世界经济体系的逐渐开放与融合,金融风险的量化分析与管理越来越引起人们的高度关注。在己经被提出的各种信用风险模型中,约化型信用风险模型是一种被金融业界广泛采用的、
科学技术日新月异的发展使得各个学科领域均提出了复杂的数学模型以揭示事物的本质.非线性问题的研究日益成为当前科学研究的热点,分歧是一种常见的重要的非线性现象,在非线性