论文部分内容阅读
数学教学主要是数学思维活动的教学。学生初步的逻辑思维能力的发展需要有一个长期的培养和训练过程。数学教学的思维训练,是根据学生的思维特点,结合教学内容在教学过程中实现的。课堂教学要对学生进行思维的积极性、求异性、广阔性、联想性等的训练,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。
一、激发学生思维动机
动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键因素。
教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产500个零件的任务交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了300个零件,李师傅加工了200个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。
这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
可见,创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。
二、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。例如:教学三年级一道应用题,雪梨和苹果一共有344个。苹果的个数是雪梨的3倍,雪梨有几个?苹果有几个?教学的时候,先画出线段图帮助分析,知道把344平均分成4份,其中1份,就是雪梨的个数86个。求苹果的个数可以怎样算呢?先让学生讨论。有些学生说,可以用雪梨的个数86个乘3就得到苹果的个数258个。我说:“除了这种方法外,还有没有其它方法。”另一些学生马上说:“也可以用总数344减去雪梨的个数86得到苹果的个数258个。通过计算结果相同,再启发学生,我们做题,有时不只一种解法,只要我们多动脑,勤思考,我们就能学习更多的知识。
三、转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维的求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含多少个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。
数学是很多人都希望有所开拓的文化课科目,那么,就让我们引导学生进入一个全新的思维空间,开拓视野、启迪思维、发展智力、提高能力,从而全面提高学生素质。
(作者单位:546100广西来宾市兴宾区第三小学)
一、激发学生思维动机
动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键因素。
教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产500个零件的任务交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了300个零件,李师傅加工了200个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。
这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
可见,创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。
二、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。例如:教学三年级一道应用题,雪梨和苹果一共有344个。苹果的个数是雪梨的3倍,雪梨有几个?苹果有几个?教学的时候,先画出线段图帮助分析,知道把344平均分成4份,其中1份,就是雪梨的个数86个。求苹果的个数可以怎样算呢?先让学生讨论。有些学生说,可以用雪梨的个数86个乘3就得到苹果的个数258个。我说:“除了这种方法外,还有没有其它方法。”另一些学生马上说:“也可以用总数344减去雪梨的个数86得到苹果的个数258个。通过计算结果相同,再启发学生,我们做题,有时不只一种解法,只要我们多动脑,勤思考,我们就能学习更多的知识。
三、转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维的求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含多少个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。
数学是很多人都希望有所开拓的文化课科目,那么,就让我们引导学生进入一个全新的思维空间,开拓视野、启迪思维、发展智力、提高能力,从而全面提高学生素质。
(作者单位:546100广西来宾市兴宾区第三小学)