初中数学课堂教学问题设计趣味性案例分析

来源 :学子·教育新理念 | 被引量 : 0次 | 上传用户:laoka
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  “数学是锻炼思维的体操”,数学教学的目的是培养学生的思维能力,而学生思维能力的培养主要是在解决数学问题的过程中进行的。问题是数学的“心脏”,问题的设计要有趣味性,能够激发学生主动去思考、交流、讨论。
  在初中数学中,几何知识是教学的重点和难点,很多学生对几何内容敬而远之。笔者分享两个几何问题设计的案例。
  案例1:已知如图1,线段AB、CD相交于O,连接AD、CB,请写出∠A、∠B、∠C、∠D之间的数量关系,并说明理由。
  解答:解:在△AOD中,∠AOD=180°-∠A-∠D,
  在△BOC中,∠BOC=180°-∠B -∠C,
  ∵∠AOD=∠BOC(对顶角相等),
  ∴180°-∠A -∠D=180°-∠B -∠C,
  ∴∠A+∠D=∠B+∠C;
  如果把形如图1的图形称之为“对顶三角形”。那么在这一个简单的图形中,笔者循序渐进的设计了九个问题,现分享如下:
  (1)仔细观察,在图2中“对顶三角形”有几个?
  (2)在图2中,若∠D=46°,∠B=30°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用原题中的结论,试求∠P的度数。
  (3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?
  (4)如图3所示,求∠A+∠B+∠C+∠D+∠E+∠F=?
  (5)如图4,若∠B=50°,∠D=32°,∠BAM=∠BAD,∠BCM=∠BCD,求∠M的度数。
  (6)如图5,设∠B=x°,∠D=y°,∠BAM=∠BAD,∠BCM=∠BCD,用含n、x、y的代数式表示∠M的度数。
  (7)如图6,点E在BA的延长线上,∠DAE的平分线和∠BCD的平分线交于点N,求∠ANC度数。
  (8)如图7,点E在BA的延长线上,点F在BC的延长线上,∠DAE的平分线和∠DCF的平分线交于点P,请直接写出∠APC 的度数。
  案例2:如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB。
  (1)若∠ABC=80°,∠ACB=60°,求∠BOC的度数。
  (2)若∠A=40°,求∠BOC的度数。
  (3)若∠A=α,用含α的代数式表示∠BOC。
  分析:(1)根据角平分线的定义得到∠OBC+∠OCB的值,再利用三角形的内角和定理求出∠BOC的值;
  (2)根据角平分线的定义和三角形的内角和定理求出∠OBC+∠OCB的值,再利用三角形的内角和定理求出∠BOC的度数;
  (3)根据角平分线的定义和三角形的内角和定理求出∠OBC+∠OCB的值,再利用三角形的内角和定理求出
  。
  为拓宽、拓深学生的思维,巩固所学知识,此题可以有如下几种变式:
  变式1:如图2,若BO,CO分别平分△ABC的两个外角,试探索∠BOC与∠ABC的数量关系。
  分析:分别作∠ABC、∠ACB的平分线交于点G,这样就可以应用原题中第三问的结论了。证明如下:
  ∵BG、CG分别平分∠ABC、∠DBC
  ∠ABC+∠DBC=180°
  ∴∠GBO=90°
  同理可得∠GCO=90°
  ∵∠GBO+∠GCO+∠G+∠O=360°
  ∴∠G+∠O=180°
  由第三问结论可知:∠G=90°+(∠A/2)
  ∴∠O=180°-(90°+(∠A/2))
  =90°-(∠A/2)
  变式2:如图3,若BO,CO分别平分△ABC一个内角和一个外角,交于点O,你能探索出∠O与∠A之间的数量关系吗?试试看。
  分析:和变式1一样,可以作∠ACB的平分线与∠ABC的平分线交于点H,也可以利用原题中的结论了。
  将图1、2、3糅合到一个图上,此类题型就得到一个升华,可以找出∠1、∠2、∠3、∠4之间的相互关系等题型。
  有趣的问题能激发学生积极思维,培养思维能力,优化课堂教学结构,提高课堂教学效率。
  (作者单位:江苏省盐城市新洋实验学校)
其他文献
【正】一、情感应用的作用情感伴随着人的一生,积极的情感能够促进学生认知的发展,是学生进行创造性学习的强大动力。让我们来作个比较:物理学研究运用逻辑思维和数学语言,风
如何像职业摄影师那样观察世界?来自风光、生态、人像和运动四个不同领域的顶尖专家与我们分享他们的拍摄秘诀。完美照片构图的秘诀是什么?有的摄影师认为是三等分原则,有的摄
<正>文体意识是指生命个体在创作和阅读文本的过程中,在体裁迥异的基础上对文本内在特质的自觉遵守、深入把握,是对文本语言进行实践感知的主观再构建。文体特征的不同,作者
稳定是三脚架的终极目标,今天让我们抛却浮华的表面,回归脚架的本质,来看看德国制造的孚勒姆三脚架朴实无华的外表下面,有多少值得去挖掘的内容。
本:H5月的封面是不是够“炫”?想要拍出这样的效果可绝非易事。美国摄影师罗伯特&#183;布尔特曼(Robert Buelteman)在给植物花卉通8万伏特电流后,经过千百次的尝试才拍下了这些炫
<正>在小学英语课堂教学中,我们需要通过适当的训练巩固新学内容,检测学生课堂接受效果,培养和发展学生技能,提高教学质量,生成课堂教学的高效。小学英语教学中,我们的教学活
<正>课堂教学的时间是有限的,学生的精力也是有限的,当教学内容或教学方式不恰当、不合理时,就会严重影响学生英语学习的效果。因此在小学英语课堂教学中,教师做好英语课堂教
目的:分析丹阳市第二人民医院(以下简称"我院")中药注射剂的应用情况,为临床合理应用中药注射剂提供参考。方法:以我院计算机系统记录的2011—2014年中药注射剂的使用数据为基础,统
目的:探讨肝硬化腹水患者临床治疗的药学监护措施,为优化临床药物治疗提供参考。方法:对1例病毒性肝炎肝硬化伴腹水患者治疗过程所用药物进行分析,根据其疾病特点、病情变化等
“健脾和胃片”对下动物复健作用;预先给药对脾证造型动物的保护作用,对脾证造型动物免疫功能的提高作用,表明本品具有和胃健脾、扶正固本、增益脾气虚弱的功效。