论文部分内容阅读
數学的解题技巧是随着对数学对象的研究的深入而不断发展。为了能进一步学好数学,学会解题是关键。 在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。那如何提高初中数学解题技巧呢?我想从下面几点简单谈谈我的想法:
一、认真分析问题,注重数学思想、化抽象为直观
《初中数学新课程标准》在学习内容中要求:“能运用图形形象地描述问题,利用直观来进行思考。”初中数学是以“数”与“形”这两个基本概念为基础而展开的。如运用平面直角坐标系来解决有关函数方面的问题,可以通过图形将复杂或抽象的数量关系直观形象地翻译出来, 探索出一条合理而乘势的解题途径,从而达到解决学生心中存在的困惑,培养学生的数学解题能力目的。
在讲解例题的过程中,我坚持不懈地对学生进行数学思想的培养,并注意与实际联系,收到了较好的效果。
比如教材中在讲二次函数时有这样一题:已知抛物线y=ax2+bx+c的对称轴为直线x=3,且经过点(5,0),则a+b+c的值为( )
A、等于0 B、等于1 C、等于-1 D、不能确定
此题若从数上考虑,可得-b/2a =3,25a+5b+c=0,用含a的代数式表示b、c后,代入则可求解。但若利用函数的图象,容易发现点(5,0)关于对称轴x=3的对称点为(1,0),代入函数解析式,即得a+b+c=0.
可见,数形结合思想是一种重要数学思想,不仅达到事半功倍的效果,还可激发学生学习数学的兴趣。现实生活中,我们在解决问题时,常说的一句话:多动脑筋,花较少的时间做更多的事,不正是这个思想的真实写照吗?
二、巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
例如分解因式:x2+2xy-8y2+2x+14y-3 .
思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,14+(-2)1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1). 其实,用特殊值法,也叫取零法.这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A.把多项式中的一个字母设为0所得的结果分解因式,B.把多项中的另一个字母设为0所得的结果分解因式,C.把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。
三、巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。
本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
四、多向探索,加强解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而小学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?”由于受数值大小这一表象的干扰,学生的思维定势集中在“6>5”上,容易误判断为“小圆剩下的多”。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问”、“一题多解”和“一题多变”。
数学技能的提高离不开解题。解题是使学生牢固掌握数学基础知识和基本技能的必要途径,也是检验知识、运用知识的基本形式。初中数学老师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。有效地培养数学解题能力,有助于独立的有创造性的认识活动,也可以促进数学能力的发展。在现代教学模式下,我们要转化解题思想,提高解题技能,利用动态思维去寻求有利于问题解决的变换途径和方法。所以学习和熟悉转化的思想,有意识地运用数学变换方法,去灵活地解决有关数学问题,将有利于提高数学解题的应变能力和技巧。
一、认真分析问题,注重数学思想、化抽象为直观
《初中数学新课程标准》在学习内容中要求:“能运用图形形象地描述问题,利用直观来进行思考。”初中数学是以“数”与“形”这两个基本概念为基础而展开的。如运用平面直角坐标系来解决有关函数方面的问题,可以通过图形将复杂或抽象的数量关系直观形象地翻译出来, 探索出一条合理而乘势的解题途径,从而达到解决学生心中存在的困惑,培养学生的数学解题能力目的。
在讲解例题的过程中,我坚持不懈地对学生进行数学思想的培养,并注意与实际联系,收到了较好的效果。
比如教材中在讲二次函数时有这样一题:已知抛物线y=ax2+bx+c的对称轴为直线x=3,且经过点(5,0),则a+b+c的值为( )
A、等于0 B、等于1 C、等于-1 D、不能确定
此题若从数上考虑,可得-b/2a =3,25a+5b+c=0,用含a的代数式表示b、c后,代入则可求解。但若利用函数的图象,容易发现点(5,0)关于对称轴x=3的对称点为(1,0),代入函数解析式,即得a+b+c=0.
可见,数形结合思想是一种重要数学思想,不仅达到事半功倍的效果,还可激发学生学习数学的兴趣。现实生活中,我们在解决问题时,常说的一句话:多动脑筋,花较少的时间做更多的事,不正是这个思想的真实写照吗?
二、巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
例如分解因式:x2+2xy-8y2+2x+14y-3 .
思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,14+(-2)1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1). 其实,用特殊值法,也叫取零法.这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A.把多项式中的一个字母设为0所得的结果分解因式,B.把多项中的另一个字母设为0所得的结果分解因式,C.把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。
三、巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。
本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
四、多向探索,加强解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而小学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?”由于受数值大小这一表象的干扰,学生的思维定势集中在“6>5”上,容易误判断为“小圆剩下的多”。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问”、“一题多解”和“一题多变”。
数学技能的提高离不开解题。解题是使学生牢固掌握数学基础知识和基本技能的必要途径,也是检验知识、运用知识的基本形式。初中数学老师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。有效地培养数学解题能力,有助于独立的有创造性的认识活动,也可以促进数学能力的发展。在现代教学模式下,我们要转化解题思想,提高解题技能,利用动态思维去寻求有利于问题解决的变换途径和方法。所以学习和熟悉转化的思想,有意识地运用数学变换方法,去灵活地解决有关数学问题,将有利于提高数学解题的应变能力和技巧。