圆锥曲线中弦长问题的解决策略

来源 :中小学教育 | 被引量 : 0次 | 上传用户:shengwei05
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式就能解决问题。但实际中,除个别简单题(本文从略)外,直接利用弦长公式会使问题变得非常繁琐。本文试图对此进行系统的总结,给出不同类型题目的解决策略。
  一、两线段相等
  类型Ⅰ:有相同端点的不共线线段
  例1.(2005,孝感二模)
  已知a=(x,0),b=(1,y),(a+ 2b)⊥(a- 2b)。
  (1)求点P(x,y)的轨迹方程C。
  (2)若直线L:y=kx+b(k≠0)与曲线C交与A、B两点,D(0,-1),且有|AD|=|BD|,试求m的取值范围。
  类型Ⅱ:共线线段
  例2.直线L与x轴不垂直,与抛物线y2=x+2交于A、B两点,与椭圆x2+2y2=2交于C、D两点,与x轴交于点M(x0,0),且|AC|=|BD|,求x0的取值范围。
  策略分析:不妨设A(x1,y1)在B(x2,y2)下方,C(x2,y3)在D(x4,y4)下方,由于A、B、C、D共线,要使|AC|=|BD|,只需x3-x1=x2-x4,即x1+x2=x3+x4,结合韦达定理可得结果。
  二、三线段相等
  类型Ⅰ:正三角形
  例3.(2003,北京春招)
  已知动圆过定点P(1,0)且与定直线L:x=-1相切,点C在L上。
  (1)求动圆圆心的轨迹M的方程。
  (2)设过点P且斜率为- 3的直线与曲线M相交于A、B两点。
  ①问三角形ABC能否为正三角形?若能,求点C坐标;若不能,说明理由。
  ②问三角形ABC能否为钝角三角形?若能,求点C纵坐标的取值范围;若不能,说明理由。
  策略分析:对于本题涉及的正三角形问题,其突出特点是,落在直线上的两个顶点实际是已知的。所以,只需设C(-1,y),根据|BC|=|AB|和|AC|=|AB|分别列方程求y值,判断两个y值是否相等。
  例4.(2005,学海大联考六)
  如图,在直角坐标系中,点A(-1,0)、B(1,0)、P(x,y),设AP、OP、BP与x轴正方向的夹角分别为α、β、γ,且α+β+γ=π。
  (1)求点P的轨迹G的方程。
  (2)设过点C(0,1)的直线L与轨迹G交于不同的两点M、N,问在x轴上是否存在一点E(x0,0)使△MNE为正三角形?
  策略分析:设直线L:y=kx-1,由韦达定理求出MN中点F的坐标,再根据kEF·kMN=-1,求出E( ,0);利用弦长公式求出|MN|,再根据 |MN|=|EF|解得k=±3。注意代入三角形验证。
  类型Ⅱ:共线线段
  例5.(2004,广东高考卷)
  设直线λ与椭圆 + =1相交于A、B两点,λ又与双曲线x2-y2=1相交于C、D两点,C、D三等分线段AB,求λ的方程。
  策略分析:实质是|AC|=|CD|=|DB|。当λ与x轴垂直时,λ方程为x=± ;当λ与x轴不垂直时,先由|AC|=|DB|,利用例3的方法,求得k=0或b=0,然后分类讨论求出A、B、C、D的横坐标,利用AB=3CD,得出b=± 和k=± 。
  三、线段成比例
  类型Ⅰ:两个已知点一个未知点
  例6.(2005,黄冈调研)
  已知椭圆C的方程为 + =1(a>b>0),双曲线 - =1的两条渐近线为L1、L2,过椭圆的右焦点F做直线L,使L⊥L1,又L与L2交于点P。设L与椭圆的两个交点由上到下依次为A、B。
  (1)当L1与L2夹角为60°,双曲线的焦距为4时,求椭圆C的方程。
  (2)当FA=λ.AP时,求λ的最大值。
  策略分析:F点和P点的坐标皆可求,根据定比分点公式,求出A点坐标,代入椭圆方程即可。
  类型Ⅱ:一个已知点两个未知点
  例7.(2004,全国卷)
  设双曲线C: -y2=1(a>0)与直线L:x+y=1相交于两个不同的点A、B。
  (1)求双曲线的离心率e的取值范围。
  (2)设直线L与y轴的交点为P,且PA= PB,求a值。
  策略分析:设A(x1,y1)、B(x2,y2)、P(0,1),由PA= PB知x1= x2,于是,x1+x2= x2,x1x2= x22,前式平方除以后式消掉x2,结合韦达定理即可求出a。
其他文献
摘 要:我国历代语文教学都注重丰富学生的语言积累,这也是提高语文素养的重要途径。新课程标准下要求更加注重学生语言的积累、感悟和运用。在实际教学中发现,有些小学生的语言知识相对贫乏,平时交流语言不流畅,写作水平较低,这就决定了加强小学生语言积累的必要性。作为教师,应该积极研究丰富小学生语言积累的方法,明确目标,提高教学效率,提高学生的语文素养。  关键词:小学生 语言积累 教学  新课程标准把语言积
期刊
一直以来,“教师教作文难、学生写作文难"的问题困扰着小学语文教学。作文教学是语文教学的是重点也是难点,《语文课程标准》中也明确指出:要让学生留心周围事物,乐于书面表达,增强习作的自信心。而中年级段是一个承上启下的学段,因而中年级段的作文教学又有其特殊性。三年级时,我们把提高作文兴趣放在主要位置,采用了不少行之有效的办法,大部分学生能够把事情说完整。四年级,我们把重点放在了通过修改作文提高习作兴趣上
期刊
摘 要:在实施美术教学的过程中,如何培养学生的审美观念以及开发学生的创新能力成为美术教学的主要目的。美术教学应以培养学生掌握理论知识和绘画实践为核心,在教育教学过程中以学生正确的审美观念、对美的正确认识以及对美的正确理解为教学目标,以培养学生的观察、实践和创新能力为教学重点。  关键词:美术教学 审美观念 欣赏能力  一、美术教学方法  1.注重学生对新事物的理解,提高学生的观察能力。观察是对具体
期刊
有效的语文教学首先是能够促进学生发展的教学,也是学生喜欢的教学。在低年级的教学中,识字、写字教学和阅读教学同样不可忽视。但识字教学对学生来说是比较枯燥的事,尤其是现在的教材识字量特别大;阅读教学对学生来说又比较难,要想培养小学生与文本的对话,引导不好就会变得费解。低年级教学怎样突出识、写字教学和阅读教学呢?在多年的低年级教学中,我觉得下面的措施常常能激发学生的兴趣、激活学生的灵感、展现学生的个性,
期刊
摘 要:教育是知识创新、传播和应用的主要基地,也是培育创新精神和创新人才的摇篮。发掘学科优势,培养学生的创造精神和高素质人才,是我们所有教育工作者的愿望。美术教育尤其责无旁贷,因为美术教育被公认为是培养创造力最具成效的学科之一,培养学生的创造思维能力在新形势下显得非常重要,这也是新的美术课程标准所体现出的性质与价值之一。本文从教学的方式、手段、内容和评价等方面进行了探索,谈谈在美术教学中培养学生创
期刊
中国古语云“一日为师,终生为父”,可见教师在传统中国人心目中的角色与地位之高。“恩师”之称不绝于史,师道尊严,于此可见一斑。因此,在教师与学生的角色定位上自然存在着上下、不对等、不平等的关系,教师居高临下地说教,学生或俯首或仰视地听教。这种教师与学生的角色定位关系已经深入人心,以致于人们视为理所当然。在新课程改革下,要求将教师与学生的传统角色进行改变,建立新型的、平等的、和谐的师生关系,从而提高学
期刊
什么是自主学习呢?所谓“自主学习”,就是“自我导向、自我激励、自我监控”的学习;是指在教师的正确引导下,充分发挥学生的主体作用,通过自学、质疑、讨论等方式深入理解课文内容并获得语言文字综合训练的阅读实践活动。它的核心是启迪学生的思维,从而达到主动、创造性的学习。它能使学生积极地参与到学习过程中,对所学东西感兴趣,并觉得富有挑战性,感觉到他们正在做有意义的事情,使学习过程有情感的投入、有内在动力的支
期刊
摘 要:培养学生的数学能力是数学课堂教学的重要目标之一。本文拟就如何培养小学生的数学基本能力,从五个方面谈谈具体做法。  关键词:数学教学 能力培养 素质教育  培养学生的数学能力是数学课堂教学的重要目标之一。小学生正处于数学能力培养的启蒙阶段,这是培养数学能力的关键时期,对于学生今后的长远发展意义重大。在多年的小学数学教学工作中,笔者对于小学生数学能力的培养有了一点认识,现与同行分享。  一、培
期刊
绘画是每个孩子抒发自己情感最直接的途径之一,美术课是孩子们感情交流的重要场所;要为儿童创造开放的教学空间,让学生在美术学习中寻找快乐、体验快乐、感受快乐。  如何在现代教育理念指导下,开发课堂教学的生命潜力,创造充满活力的课堂教学实践?近年来,我们以“自主探究教学方式”的课题研究为突破口,走出了封闭、单一的课堂,创设开放的充满活力的课堂,真正把学习的主动权交给学生,使学生在课堂中得到了个性发展。 
期刊
《高中化学课程标准教师读本》指出:“课堂教学决不能只有科学探究一种方法,而应是多种方法优点的集合,只要学习过程以有挑战性的问题引导,学生主动积极思考、交流、反思调整,就体现了学生的主体性。”因此教师要善于在课堂教学中创设各种问题情境,调动学生的学习兴趣,善于启发引导,使学生时刻处于一个气氛轻松活泼、思维活跃的学习过程中。下面结合化学教学谈谈如何创设问题情境:  一、引课时的问题设置  如学习“氯气
期刊