【摘 要】
:
为保证在轨机动实时性和高精度的要求,提出了一种基于机器学习的在轨实时机动决策方法.通过优化算法离线获得摄动下的精确解,减去二体解得到速度增量差,将其投影到轨道坐标系
【机 构】
:
北京航空航天大学 宇航学院,北京 100083
论文部分内容阅读
为保证在轨机动实时性和高精度的要求,提出了一种基于机器学习的在轨实时机动决策方法.通过优化算法离线获得摄动下的精确解,减去二体解得到速度增量差,将其投影到轨道坐标系获得速度增量摄动修正项,以此作为神经网络输出,设计网络参数并训练得到摄动修正网络、组合应用摄动修正网络和二体解实现高精度的在轨实时轨道机动决策.仿真结果表明:卫星按照该决策机动完成后的终端位置偏差与按照优化算法给出的决策机动完成后终端位置偏差精度一致,且前者决策耗时仅为后者决策耗时的0.01%左右.所提轨道机动决策方法兼顾了精度与实时性,适用于星上决策.
其他文献
交通预测是智能交通系统中的关键问题之一,精准的交通预测对于城市交通运营调整、物流运输产业提质增效以及公众出行规划等交通需求具有重要作用.近年来,多种用于解决交通预测问题的深度学习的框架已经被提出,其中图卷积网络(graph convolutional network,GCN)及其变体在各类交通预测模型中脱颖而出,取得了可观的准确率.因此,对基于GCN的交通流预测模型进行归纳总结,从图卷积的基本定义出发,以频域图卷积和空域图卷积为主,介绍GCN的基本原理.随后,通过对图时空网络、图自编码器以及图注意力网络的
目前,创新能力的提升已成为热门话题,教育的创新就是核心,而教育创新的核心在于教师创新能力的发展,本文深入探讨了教师创新能力的内涵,并发掘影响创新能力提高的部分主要因
对深度学习模型应用于时空序列预测的最新进展进行总结.首先介绍时空序列数据的属性及类型,并进行相应的实例化与表示.接着针对时空序列数据存在的3个问题分别提出相应的数据
本文提出的高能效直流电子负载技术是将超宽范围的直流电压经过创新的DC/DC高频隔离变换及控制技术转换为高压直流电压,然后经过高性能的LCL滤波器单相H桥逆变器的并网回馈控
为了解决神经架构搜索(neural architecture search, NAS)算力要求高、搜索耗时长等缺陷,结合深度神经网络的人工设计经验,提出基于人工经验网络架构初始化的NAS算法.该算法对搜索空间进行了重新设计,选取VGG-11作为初始架构,有效减少了由参数的随机初始化带来的无效搜索.基于上述设计方案,在图像分类经典数据集Cifar-10上进行了实验验证,经过仅12 h的搜索便获得VG
聚类分析是挖掘数据内在结构的关键技术,在大数据时代,人们面对的数据通常具有规模大、维度高、结构复杂等特点,直接应用传统聚类算法往往会失效.深度学习凭借层次化非线性映射能力使得大规模深度特征提取成为可能,因此基于深度学习的聚类(深度聚类)算法迅速成为无监督学习领域的研究热点.该文旨在对深度聚类的研究现状进行归纳和总结.首先,从神经网络结构、聚类损失和网络辅助损失3个角度介绍深度聚类的相关概念;然后,根据网络的结构特点对现有的深度聚类算法进行分类,并分别对每类方法的优势和劣势进行分析和阐述;最后,提出好的深度
为了解决双流融合网络对动态手势关键帧及手部轮廓特征检测不足的问题,提出一种手势时空特征与通道注意力融合的动态手势识别方法.首先,在双流融合网络中引入有效通道注意力(eficient channel attention, ECA)增强双流识别算法对手势关键帧的关注度,并利用双流中的空间卷积网络和时间卷积网络分别提取动态手势中的空间和时序特征;其次,通过ECA在空间流中选取最高关注度的手势帧,利用单发
针对传统算法、智能算法与强化学习算法在自动引导小车(automated guided vehicle,AGV)路径规划中收敛速度慢、学习效率低的问题,提出一种启发式强化学习算法,并针对传统Q(λ)算法,设计启发式奖励函数和启发式动作选择策略,以此强化智能体对优质行为的探索,提高算法学习效率.通过仿真对比实验,验证了基于改进Q(λ)启发式强化学习算法在探索次数、规划时间、路径长度与路径转角上都具有一定的优势.
对国内的各个医院来说,档案管理尤为重要,医院档案包含各种医学文件、医护人员的个人信息以及医疗设备信息等.当前,为提高医院档案管理的效率和有效地对其进行利用,医院高层
为了提高加密图像的破解难度且不显著增加图像还原时间,提出了一种保护图像数据的方法,它可以解决现存的问题.首先,提出一种动态密码校验技术,其特点是可以扩展密文位数,在明文不变的情况下保证每次产生的密文不同,从而防止密码算法被字典或穷举方法破解,同时可根据计算机系统环境自主调整加密解密性能;其次,提出魔方密码算法,将像素和密码数据重新排列成六面体结构,按照十字轴的形式混淆面与位上的数据,达到加密图像的