商奇异值分解相关论文
该文阐述了一种基于信号子空间的语音增强算法,其中心思想是将信号视为N维向量空间中的一个向量,并将"纯信号"与噪声分解为不同子......
约束矩阵方程问题在结构设计、系统识别、自动控制理论、有限元、振动理论、线性最优控制等领域中有着广泛的应用,至今已取得很多研......
约束矩阵方程问题在系统识别、结构设计、自动控制理论、振动理论、线性最优控制、有限元等领域中有着非常广泛的应用。研究约束矩......
通过采用一种新方法得出了矩阵方程AXB=C有中心对称解的充分必要条件、解的一般表达式;利用矩阵对的商奇异值分解、广义逆,给出了......
随着应用的推动,矩阵反问题的研究已经取得了许多进展.反中心对称矩阵在信息论,,线性系统理论,线性估计系统理论等领域中有实际应用,而关......
利用矩阵对的商奇异值分解,给出了线性流形上矩阵方程AXAT=B存在极小Frobenius范数对称正交对称解的充要条件及其解的表达式.......
文章讨论子矩阵约束下‖AX-Z‖2+‖YHA-WH‖2=min的广义中心对称解及其最佳逼近,给出了解存在的充要条件及通解的表达式,并且给出了......
随着应用的推动,矩阵反问题的研究已经取得了许多进展.反中心对称矩阵在信息论,,线性系统理论,线性估计系统理论等领域中有实际应用,而关......
分别利用矩阵的商奇异值分解和广义奇异值分解两种方法对线性矩阵方程ATXA=B的对称自正交相似解是否存在进行了讨论,并分别得到了......
本文利用矩阵对的商奇异值分解(QSVD),得到了线性流形上矩阵方程(ATXA,BTXB)=(C,D)反对称解存在的充分必要条件,并给出了通解表达......
利用矩阵的奇异值分解和商奇异值分解,建立了子矩阵约束下的矩阵方程X^AX=B解存在的充分必要条件,并给出了通解的表达式。进而,考虑了......
讨论二次特征值反问题在主子阵约束下广义反自反解及其最佳逼近问题。利用矩阵的奇异值分解和商奇异值分解,建立了在主子阵约束下广......
利用矩阵的奇异值分解和商奇异值分解,建立了中心主子阵约束下二次特征值反问题的广义反中心对称解存在的充分必要条件,并给出了通......
利用矩阵对的商奇异值分解得出了矩阵方程AX=B的反中心对称解的最小秩、最大秩及最小秩解的一般表达式.还给出了反中心对称最小秩......
讨论了矩阵方程的最小秩解及其最佳逼近,利用矩阵对的广义奇异值分解,得到了定秩解的解集合;对于最小秩解的解集合Sm,得到了最佳逼近解......
利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论了子矩阵约束下反对称正交反对称矩阵的反问题,给出了其有解的充分必要条件及在有......
利用矩阵对的商奇异值分解,得到了矩阵方程AX=B有中心对称解的充分必要条件,以及有解时,最小、最大秩解的一般表达式.另外,给出了中心对......
利用矩阵对的商奇异值分解,得到矩阵方程AXB=C的对称最小二乘解的通解表达式,同时推出了该矩阵方程对称解存在的充分必要条件,并给......
讨论子矩阵约束下矩阵方程AX=B的广义中心对称解及其最佳逼近,分析了解存在的充要条件及通解的表达式,并且给出了解集合中与给定矩......
利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论子矩阵约束下对称正交对称矩阵反问题,给出了其有解的充分必要条件及在有解条件下......
利用矩阵的奇异值分解和商奇异值分解,建立子矩阵约束下的矩阵反问题XTAX=B对称解存在的充分必要条件,并给出了通解的表达式,得到......
通过采用一种新方法得出了矩阵方程AXB=C有中心对称解的充分必要条件、解的一般表达式;利用矩阵对的商奇异值分解、广义逆,给出了其......
利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论了子矩阵约束下双反对称矩阵扩充问题,给出了其扩充的充要条件和扩充后的通解表......
约束矩阵方程广泛应用于系统工程、自动控制、统计学、经济学、网络规划、土木工程、振动理论等,研究约束矩阵方程的解的秩和定秩......
利用矩阵对的商奇异值分解,给出了线性流形上矩阵方程ATXA=B存在中心对称解的充要条件及其通解的表达式.另外,导出了线性流形上矩......