【摘 要】
:
该文主要讨论了一类含有吸收项,并且在边界上耦合的非线性抛物方程组.研究其解的爆破和整体存在条件,以及临界指标问题.在绪论中,该文介绍了反应扩散方程的实际意义和来源.在
论文部分内容阅读
该文主要讨论了一类含有吸收项,并且在边界上耦合的非线性抛物方程组.研究其解的爆破和整体存在条件,以及临界指标问题.在绪论中,该文介绍了反应扩散方程的实际意义和来源.在第二章,主要介绍了与该文有关的必备知识和主要工具,以及该方向上的发展现状,最后介绍了作者导师的相关工作.第三章是该文的重点.讨论了一类含有非线性反应(吸收)和非线性边界流等多重非线性项的反应扩散方程组,给出了解的一些性质和问题的临界指标.研究结果用特征代数方程组的形式加以简洁地描述,清楚地刻画了所有非线性指标对解的行为的本质作用.最后在第四章,该文继续深入探讨了同一问题在一维情况下的解的爆破速率.
其他文献
在1964年,J. Thompson对任意有限群P,引入了三个不同的特征子群Jr(P), Jo(P), Je(P),使用这三个子群分别证明了类似的Thompson p-幂零定理.该结果不仅推广了 Frobenius关于p-
中立型泛函微分方程是一类重要的泛函微分方程,且其在物理、生物、工程技术等领域都有着广泛的应用.由于该类方程结构的复杂性,导致中立型泛函微分方程解的存在性及其定性研
分数阶微分方程在物理、化学、生物、材料工程等多个学科领域中有着广泛的应用。因此,分数阶微分方程边值问题解的存在性和唯一性受到了很多学者的广泛关注。 本文包括四
为了有效地计算重特征值或密集特征值,该文讨论了动态收缩技术对隐式重新开始块Lanczos方法的应用,提出了隐式重新开始块Lanczos方法的动态收缩技术.隐式重新开始块Lanczos方
自动指纹识别是应用最广泛的身份识别技术之一,也是模式识别的前沿研究领域.该文主要探讨了指纹识别系统中的特征匹配和多个指纹认证系统的融合等问题.方向和频率滤波是指纹
这篇论文介绍了图像处理中的发展比较早、应用范围比较广的一类重要的处理技术:图像复原,或者称图像重构,或者称图像恢复,同时简要概述了最优化方法的一些基本内容。重点讲述了用
偏微分方程的发展可以追溯到18世纪,并且至今偏微分方程仍然是人们研宄的热点问题之一.早在上个世纪数学家们已经对不同类型的偏微分方程解的存在性、唯一性、稳定性等性质给
本文包含三章:第一章是绪论;第二章考虑了在有界光滑区域上的Kirchhoff问题,利用山路定理和喷泉定理得到相应问题解的存在性与多解性;第三章我们主要利用截断方法和山路定理,
KKM原理和平衡问题理论已成为研究来自自然科学和社会科学中各类非线性问题的有力工具.由于其广泛的应用前景,这些理论和应用的研究正处于迅速发展阶段,毫无疑问,越来越多的
最优化方法是运筹学的一个重要组成部分,在自然科学,社会科学,生产实践,工程设计和现代化管理中具有广泛的应用.很多实际问题都可以归结为最优化问题来解决.最优化问题的一个