论文部分内容阅读
教学内容:人教版小学数学四年级下册P82。
教学目标:①知识与技能:通过创设情境,观察比较,初步感知三角形边的关系,体验学数学的乐趣;运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。②过程与方法:通过动手操作、小组合作,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,培养学生的动手能力、合作能力、逻辑思维能力、自主探究能力。③情感与态度:通过数学知识的应用,感受数学与实际生活的密切联系,体验“做数学”的成功,培养学生的应用意识;在推导结论中,学会从全面、周到的角度考虑问题;在小组合作的活动中,培养团结协助的精神。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:通过动手操作、小组合作,引导学生探究并发现“三角形任意两边的和大于第三边”这一性质。
教学准备:课件一套,小棒若干。
教学过程:
1 探索三角形三边的关系
1.1 谈话导入。师:请同学们拿出老师刚才发给你的两根小棒,请同学们观察这两根小棒有什么特点?生:一长一短。师:如果老师想让你们用它们围成三角形,怎么办?生:把其中的一根剪成两段。师:是不是不管剪长的的这一根还是短的这一根都能拼成三角形呢?生:(两种情况)可以或者不可以。师:那下面我们来个比赛,这样我们请这几组把短的这一根剪成两段,请这几组把长的这一根剪成两段,我们来比一比,哪一组最先围成三角形,那一组就获胜。请准备,比赛开始!
1.2 学生动手实验。
1.3 造成悬念:师:时间到,我们祝贺围成的同学,你们获得了胜利,让我们用热烈的掌声向获胜的同学表示祝贺。生1:老师,比赛不公平。生2:材料不一样。生……师:有的同学说了刚才的比赛不公平,是因为材料的问题。看来不是随随便便的三根小棒就可以围成一个三角形,这里面肯定藏着什么秘密。能不能围成三角形与小棒的长度有关,也就是与三角形的边有关系。(板书课题)三角形的三边关系。师:请同学们先想一想自己刚才剪小棒和围三角形的过程,然后结合自己是否能围成三角形的这个结果,四人一小组进行讨论,看看你们都有什么发现?
1.4 学生讨论。
1.5 汇报。生1:我发现我是把短的这一根小棒剪成两段,这两段的长度的和比长的那一根的长度要长,就不能围成三角形。而我同桌的是把长的那一个剪成两段,这两段的长度的和要比短的那一根的长度要长,能围成三角形。生2:也就是说,如果三根小棒中的两根小棒的长度和比第三边的长度要长,这样的三根小棒就能围成三角形。(师板书)三角形(任意)的两边之和大于第三边。师:请同学们想一想,我们怎么帮帮刚才没有围成三角形的同学们,把他手中的小棒加工一下,让他们的小棒也围成三角形?生:把长的那一根剪短。师:剪多少?生:剪得比另外两根小棒的和要短。师:请同桌互相合作完成。
设计意图:通过一场不公平的比赛和学生对实际问题的操作,学生发现有些(三根棒)能围成三角形,有些(三根棒)不能围成三角形,学生产生质凝,为什么会出现这样的结果,激发学生学习兴趣。产生学习动力。培养了学生自主学习,自主探究的精神。通过进一步验证,初步了解构成三角形的条件,大大地提高了学生分析问题、解决问题的能力,同时也教给了学生探索几何问题的方法。
2 验证并完善结论
师:刚才我们通过一个不公平的比赛,得出了“只有当三条线段的两条线段的之和大于第三线段时,这三条线段才能围成三角形”这个结论,那么请同学们拿出老师给你的小棒,请你们观察一下这些小棒与刚才的小棒有什么不同?生:小棒上有数据。师:看来这些数据是有用的。现在我们来进行一次公平的比赛,请同学们在老师给你的小棒中迅速的找出三根小棒来围成三角形,看看谁围得最快。学生汇报,说明自己的理由,并说出自己的方法。(出现简单的判定方法:“两条短的线段的长度的和大于第三条线段的长度就能围成三角形”)师:(设疑)用3cm、6cm、9cm这三根小棒能围成三角形吗?为什么?(引出)“两边之和大于第三边不太准确”,要加上“任意”(用不同的颜色注明)。师(小结):通过刚才的这个比赛,我们知道了不是说只要两条线段的和大于第三条线段就可以围成三角形,要保证任意两条线段之和大于第三条线段才行。同时我们还学会了一种简单的判定方法,就是只要两条短的线段的和大于第三条线段就能围成三角形。
设计意图:通过第二场公平的比赛,学生在比赛、讨论中总结出了简单的判定方法,并且通过用“3cm、6cm、9cm”三根小棒围三角形的活动进一步完善了“三角形任意两边之和大于第三边”这一性质。学生在比赛中学习知识、完善知识,同时也对知识加深了印象。
3 巩固练习
同学们学的怎么样呢,我们来做几道巩固练习。
3.1 课本“做一做”。在能拼成三角形的各组小棒下面画“√”。(单位:厘米)学生汇报(要求说出判断的方法及简单的判定方法)
3.2 最短路线。小明家到学校有几条路可以走?哪条最近?为什么?
3.3 如果姚明的两条腿分别长1.3米,他迈一大步的长能达到3米吗?(动画演示姚明“劈叉”,让学生在开心愉悦中知道“三角形的任意两边之和大于第三遍”这一性质在生活中的应用)
设计意图:通过巩固练习让学生加深了对“三角形三边关系”的了解,同时在愉悦的学习活动中知道了数学知识是来源于生活,而又运用到生活中去的。
4 拓展练习(渗透取值范围)
(出示)学校的木工小组现有两根木条,分别长7厘米和10厘米,要选择第三根木条,钉成一个三角形木架,你能帮助确定第三根木条的长度可以是多少厘米?(结果是整厘米数)师:请同学们四人一小组讨论。(学生汇报)生:可以是4cm、5cm……一直到16cm。师:可以是3cm吗?17cm吗?为什么?生:不可以,要保证两边之和要大于第三边。师:也就是说第三根的长度要比3cm大,比17cm小,也就是说在3cm和17cm之间才行。生:我发现3cm是7cm和10cm的差,而17cm是7cm和10cm的和。师:也就说是要比两边之和要小,比两边之差要大。 设计意图:本环节的习题是一道生活中的问题,让学生在解决生活中问题的同时对所学知识进行进一步的加深,同时又让学生通过找可以围成三角形的第三边的长度来学习已知三角形两边的长度来确定第三边长度的取值范围。
5 全课小结
师:这节课你有什么收获?生汇报。师:今天我们学习了三角形的边的一些知识,其实三角形还有很多的知识值得我们去探索和研究,希望同学们在后面的学习中也能学的开心和快乐。
教学反思:三角形是常见的一种图形,在平面图形中,三角形是最简单、最基本的图形,一个多边形都可以分割成若干个三角形。因此,把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。
几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。基于这样的考虑,教材在提供大量形象的感性材料的同时,加强了数学问题情景、操作探索活动的设计。
在执教“三角形三边关系”这一部分内容,我进行了如下的反思:①从熟悉的生活实例抽象出数学问题,激起学生探索的愿望。一上课就给学生提出一个挑战性的问题:怎么样把两根不同长短的小棒围成一个三角形,需要把其中的一根剪成两段,是不是不管是剪唱的还是剪短的都一定能围成三角形呢?有的学生不加思考认为“能”,在仔细一想“不一定”。激起学生动手实验进行探究的愿望。②适时组织数学实验,引导学生探索发现数学规律。激起学生疑问后,适时组织数学实验来“解释”,这时学生抱着积极的心态来参加数学活动。组织数学活动目的明确,步骤清楚,特别是比赛活动全体学生都能参加。学生水到渠成地发现了“三角形(任意)两边之间和大于第三边”的规律。并通过第二个比赛,让学生进一步掌握了简单的判定方法“两条短边之和大于第三边”,同时完善了“三角形任意两边之和大于第三边”(强调“任意”)。这些操作、交流、探索、发现虽然有一定的挑战性,但是是学生力所能及的,因此能做到全员参与、全神贯注。③练习设计步步递进,体现了拓展应用。第一个练习,根据一组小棒的长度,判断是有否组成三角形。第二个练习最短路线,从另一侧面深化理解自己发现的规律并知道数学知识与生活的练习。第三个练习给出两根小棒的长度,如果想组成三角形,必须找第三根小棒的取值范围。要求学生先想一想,再摆一摆。三个练习体现了一定的层次性,使不同的学生得到了不同的发展,体现了“下要保底,上不封顶”的教学思想。
教学目标:①知识与技能:通过创设情境,观察比较,初步感知三角形边的关系,体验学数学的乐趣;运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。②过程与方法:通过动手操作、小组合作,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,培养学生的动手能力、合作能力、逻辑思维能力、自主探究能力。③情感与态度:通过数学知识的应用,感受数学与实际生活的密切联系,体验“做数学”的成功,培养学生的应用意识;在推导结论中,学会从全面、周到的角度考虑问题;在小组合作的活动中,培养团结协助的精神。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:通过动手操作、小组合作,引导学生探究并发现“三角形任意两边的和大于第三边”这一性质。
教学准备:课件一套,小棒若干。
教学过程:
1 探索三角形三边的关系
1.1 谈话导入。师:请同学们拿出老师刚才发给你的两根小棒,请同学们观察这两根小棒有什么特点?生:一长一短。师:如果老师想让你们用它们围成三角形,怎么办?生:把其中的一根剪成两段。师:是不是不管剪长的的这一根还是短的这一根都能拼成三角形呢?生:(两种情况)可以或者不可以。师:那下面我们来个比赛,这样我们请这几组把短的这一根剪成两段,请这几组把长的这一根剪成两段,我们来比一比,哪一组最先围成三角形,那一组就获胜。请准备,比赛开始!
1.2 学生动手实验。
1.3 造成悬念:师:时间到,我们祝贺围成的同学,你们获得了胜利,让我们用热烈的掌声向获胜的同学表示祝贺。生1:老师,比赛不公平。生2:材料不一样。生……师:有的同学说了刚才的比赛不公平,是因为材料的问题。看来不是随随便便的三根小棒就可以围成一个三角形,这里面肯定藏着什么秘密。能不能围成三角形与小棒的长度有关,也就是与三角形的边有关系。(板书课题)三角形的三边关系。师:请同学们先想一想自己刚才剪小棒和围三角形的过程,然后结合自己是否能围成三角形的这个结果,四人一小组进行讨论,看看你们都有什么发现?
1.4 学生讨论。
1.5 汇报。生1:我发现我是把短的这一根小棒剪成两段,这两段的长度的和比长的那一根的长度要长,就不能围成三角形。而我同桌的是把长的那一个剪成两段,这两段的长度的和要比短的那一根的长度要长,能围成三角形。生2:也就是说,如果三根小棒中的两根小棒的长度和比第三边的长度要长,这样的三根小棒就能围成三角形。(师板书)三角形(任意)的两边之和大于第三边。师:请同学们想一想,我们怎么帮帮刚才没有围成三角形的同学们,把他手中的小棒加工一下,让他们的小棒也围成三角形?生:把长的那一根剪短。师:剪多少?生:剪得比另外两根小棒的和要短。师:请同桌互相合作完成。
设计意图:通过一场不公平的比赛和学生对实际问题的操作,学生发现有些(三根棒)能围成三角形,有些(三根棒)不能围成三角形,学生产生质凝,为什么会出现这样的结果,激发学生学习兴趣。产生学习动力。培养了学生自主学习,自主探究的精神。通过进一步验证,初步了解构成三角形的条件,大大地提高了学生分析问题、解决问题的能力,同时也教给了学生探索几何问题的方法。
2 验证并完善结论
师:刚才我们通过一个不公平的比赛,得出了“只有当三条线段的两条线段的之和大于第三线段时,这三条线段才能围成三角形”这个结论,那么请同学们拿出老师给你的小棒,请你们观察一下这些小棒与刚才的小棒有什么不同?生:小棒上有数据。师:看来这些数据是有用的。现在我们来进行一次公平的比赛,请同学们在老师给你的小棒中迅速的找出三根小棒来围成三角形,看看谁围得最快。学生汇报,说明自己的理由,并说出自己的方法。(出现简单的判定方法:“两条短的线段的长度的和大于第三条线段的长度就能围成三角形”)师:(设疑)用3cm、6cm、9cm这三根小棒能围成三角形吗?为什么?(引出)“两边之和大于第三边不太准确”,要加上“任意”(用不同的颜色注明)。师(小结):通过刚才的这个比赛,我们知道了不是说只要两条线段的和大于第三条线段就可以围成三角形,要保证任意两条线段之和大于第三条线段才行。同时我们还学会了一种简单的判定方法,就是只要两条短的线段的和大于第三条线段就能围成三角形。
设计意图:通过第二场公平的比赛,学生在比赛、讨论中总结出了简单的判定方法,并且通过用“3cm、6cm、9cm”三根小棒围三角形的活动进一步完善了“三角形任意两边之和大于第三边”这一性质。学生在比赛中学习知识、完善知识,同时也对知识加深了印象。
3 巩固练习
同学们学的怎么样呢,我们来做几道巩固练习。
3.1 课本“做一做”。在能拼成三角形的各组小棒下面画“√”。(单位:厘米)学生汇报(要求说出判断的方法及简单的判定方法)
3.2 最短路线。小明家到学校有几条路可以走?哪条最近?为什么?
3.3 如果姚明的两条腿分别长1.3米,他迈一大步的长能达到3米吗?(动画演示姚明“劈叉”,让学生在开心愉悦中知道“三角形的任意两边之和大于第三遍”这一性质在生活中的应用)
设计意图:通过巩固练习让学生加深了对“三角形三边关系”的了解,同时在愉悦的学习活动中知道了数学知识是来源于生活,而又运用到生活中去的。
4 拓展练习(渗透取值范围)
(出示)学校的木工小组现有两根木条,分别长7厘米和10厘米,要选择第三根木条,钉成一个三角形木架,你能帮助确定第三根木条的长度可以是多少厘米?(结果是整厘米数)师:请同学们四人一小组讨论。(学生汇报)生:可以是4cm、5cm……一直到16cm。师:可以是3cm吗?17cm吗?为什么?生:不可以,要保证两边之和要大于第三边。师:也就是说第三根的长度要比3cm大,比17cm小,也就是说在3cm和17cm之间才行。生:我发现3cm是7cm和10cm的差,而17cm是7cm和10cm的和。师:也就说是要比两边之和要小,比两边之差要大。 设计意图:本环节的习题是一道生活中的问题,让学生在解决生活中问题的同时对所学知识进行进一步的加深,同时又让学生通过找可以围成三角形的第三边的长度来学习已知三角形两边的长度来确定第三边长度的取值范围。
5 全课小结
师:这节课你有什么收获?生汇报。师:今天我们学习了三角形的边的一些知识,其实三角形还有很多的知识值得我们去探索和研究,希望同学们在后面的学习中也能学的开心和快乐。
教学反思:三角形是常见的一种图形,在平面图形中,三角形是最简单、最基本的图形,一个多边形都可以分割成若干个三角形。因此,把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。
几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。基于这样的考虑,教材在提供大量形象的感性材料的同时,加强了数学问题情景、操作探索活动的设计。
在执教“三角形三边关系”这一部分内容,我进行了如下的反思:①从熟悉的生活实例抽象出数学问题,激起学生探索的愿望。一上课就给学生提出一个挑战性的问题:怎么样把两根不同长短的小棒围成一个三角形,需要把其中的一根剪成两段,是不是不管是剪唱的还是剪短的都一定能围成三角形呢?有的学生不加思考认为“能”,在仔细一想“不一定”。激起学生动手实验进行探究的愿望。②适时组织数学实验,引导学生探索发现数学规律。激起学生疑问后,适时组织数学实验来“解释”,这时学生抱着积极的心态来参加数学活动。组织数学活动目的明确,步骤清楚,特别是比赛活动全体学生都能参加。学生水到渠成地发现了“三角形(任意)两边之间和大于第三边”的规律。并通过第二个比赛,让学生进一步掌握了简单的判定方法“两条短边之和大于第三边”,同时完善了“三角形任意两边之和大于第三边”(强调“任意”)。这些操作、交流、探索、发现虽然有一定的挑战性,但是是学生力所能及的,因此能做到全员参与、全神贯注。③练习设计步步递进,体现了拓展应用。第一个练习,根据一组小棒的长度,判断是有否组成三角形。第二个练习最短路线,从另一侧面深化理解自己发现的规律并知道数学知识与生活的练习。第三个练习给出两根小棒的长度,如果想组成三角形,必须找第三根小棒的取值范围。要求学生先想一想,再摆一摆。三个练习体现了一定的层次性,使不同的学生得到了不同的发展,体现了“下要保底,上不封顶”的教学思想。