论文部分内容阅读
当今社会,究竟需要什么样的人才呢,教育要培养有创新观念、能够不断从事技术创新、善于经营和开拓市场、有团队精神的人才。数学教学中应加强学生以下四个方面能力的培养。
一、在数学教学中培养学生的新观念、新思想
数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。例如:已知 a≥0,b≥0, 且 a+b=1, 求证:(a+2) (a+2) +(b+2) (b+2)≥25/2
证明这个不等式方法较多,除基本证法外,可利用二次函数的求最小值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a≥0,b≥0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
二、在数学教学中培养学生的创新能力
在“球的体积”教学中,我将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径和高为10厘米的圆锥;第三组每人做半径、高为10厘米的圆柱。再通过实践让学生们发现半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,使其从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生经营和开拓市场的能力
在教学中,教师应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的惟一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
四、在数学教学中培养学生团队精神
数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如:在讲授“球的体积公式”时,课前让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让20名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲明实验材料为什么各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。数学教学具有不仅使学生学知识,学解决问题的方法,而且使学生学习中实现共同生活,共同发展的目标任务。
一、在数学教学中培养学生的新观念、新思想
数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。例如:已知 a≥0,b≥0, 且 a+b=1, 求证:(a+2) (a+2) +(b+2) (b+2)≥25/2
证明这个不等式方法较多,除基本证法外,可利用二次函数的求最小值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a≥0,b≥0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
二、在数学教学中培养学生的创新能力
在“球的体积”教学中,我将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径和高为10厘米的圆锥;第三组每人做半径、高为10厘米的圆柱。再通过实践让学生们发现半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,使其从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生经营和开拓市场的能力
在教学中,教师应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的惟一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
四、在数学教学中培养学生团队精神
数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如:在讲授“球的体积公式”时,课前让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让20名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲明实验材料为什么各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。数学教学具有不仅使学生学知识,学解决问题的方法,而且使学生学习中实现共同生活,共同发展的目标任务。