论文部分内容阅读
[摘要]:通过数学实验这种教与学的方式,致力于影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。
[关键词]:数学实验 直观 教学 操作
数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。有人认为实验仅是自然科学的教学手段,这是一种误解,因为,从广义上说,数学教育也是一种科技活动,是科技工作的一部分。正确地恰到好处地应用数学实验,也是当前素质教育中的一个重要层面。虽然,数学实验一直不被人们所重视,但随着现代教育技术,特别是CAI软件的普及,数学实验必将遍地开花。下面本人就“数学实验”在初中数学教学中谈几点自己的拙见。
一、通过数学实验,培养学生的创新思维能力.
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,反这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形垂心.
通过折纸这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”、“直角三角形斜边中线等于斜边的一半”、“勾股定理”、“特殊直角三角形”及“平行线分线段成比例”等等。通过这些实验操作,一方面使学生能更深入、更扎实地掌握数学知识。
二、通过数学实验,突破课堂中的教学难点.
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。
例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这点内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一水杯和二份50g盐。教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就自然地回答出。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水的盐的质量分数双是多少?学生也能回答出。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大)。
三、通过数学实验,激励学生在生活中应用数学.
通过数学教学,帮助学生树立数学应用意识是素质教育的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,在学了一些相关知识后,可让学生根据所学知识设计一些作图工具或测量仪器,如制作丁字尺找圆心、制作勾股计算尺等;或让学生制作一些数学模型,如长方体、正三棱柱(锥)等模型;或让学生设计方案并解决“不过河测河宽”、“测操场上旗杆的高度”等问题。如:在一次数学活动课,老师组织学生到野外测量一个池塘的宽度(即图中A、B间的距离)。例案:在A处测出∠BAE=900,并在射线AE上的适当位置取点C,量出AC、BC的长度;运用勾股定理,得AB2=AC2 BC2。请学生给出其他的测量方案(要求画出测量示意图,并简要说明测量方法和计算依据)。
这样,通过学生的文体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
事实上,几何证明的方法常常也是通过对图形的操作,变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面的“发现(猜想)”的真确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形:在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影響。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
五、通过数学实验,培养学生的唯物辩证观
数学实验为学生认识唯物论和辩证法提供了丰富的感性知识材料,学生每经过一次实验操作,其思维过程必然经历“感知——表象——抽象——反馈——再感知——丰富表象——发展思维——问题解决”这一螺旋上升的阶段。再者,学生“用数学”意识的培养,就是数学理论知识反作用于实践的有力体现。因此,在数学实验中培养学生的唯物辩证观,是完全可行的。
数学实验是一个过程,在这个过程中,学生进行探究和发现的活动,一切结论都应该由学生自己得出。因此,在数学实验中给学生提供答案是不必的甚至是有害的。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。
[关键词]:数学实验 直观 教学 操作
数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。有人认为实验仅是自然科学的教学手段,这是一种误解,因为,从广义上说,数学教育也是一种科技活动,是科技工作的一部分。正确地恰到好处地应用数学实验,也是当前素质教育中的一个重要层面。虽然,数学实验一直不被人们所重视,但随着现代教育技术,特别是CAI软件的普及,数学实验必将遍地开花。下面本人就“数学实验”在初中数学教学中谈几点自己的拙见。
一、通过数学实验,培养学生的创新思维能力.
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,反这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形垂心.
通过折纸这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”、“直角三角形斜边中线等于斜边的一半”、“勾股定理”、“特殊直角三角形”及“平行线分线段成比例”等等。通过这些实验操作,一方面使学生能更深入、更扎实地掌握数学知识。
二、通过数学实验,突破课堂中的教学难点.
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。
例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这点内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一水杯和二份50g盐。教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就自然地回答出。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水的盐的质量分数双是多少?学生也能回答出。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大)。
三、通过数学实验,激励学生在生活中应用数学.
通过数学教学,帮助学生树立数学应用意识是素质教育的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,在学了一些相关知识后,可让学生根据所学知识设计一些作图工具或测量仪器,如制作丁字尺找圆心、制作勾股计算尺等;或让学生制作一些数学模型,如长方体、正三棱柱(锥)等模型;或让学生设计方案并解决“不过河测河宽”、“测操场上旗杆的高度”等问题。如:在一次数学活动课,老师组织学生到野外测量一个池塘的宽度(即图中A、B间的距离)。例案:在A处测出∠BAE=900,并在射线AE上的适当位置取点C,量出AC、BC的长度;运用勾股定理,得AB2=AC2 BC2。请学生给出其他的测量方案(要求画出测量示意图,并简要说明测量方法和计算依据)。
这样,通过学生的文体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
事实上,几何证明的方法常常也是通过对图形的操作,变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面的“发现(猜想)”的真确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形:在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影響。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
五、通过数学实验,培养学生的唯物辩证观
数学实验为学生认识唯物论和辩证法提供了丰富的感性知识材料,学生每经过一次实验操作,其思维过程必然经历“感知——表象——抽象——反馈——再感知——丰富表象——发展思维——问题解决”这一螺旋上升的阶段。再者,学生“用数学”意识的培养,就是数学理论知识反作用于实践的有力体现。因此,在数学实验中培养学生的唯物辩证观,是完全可行的。
数学实验是一个过程,在这个过程中,学生进行探究和发现的活动,一切结论都应该由学生自己得出。因此,在数学实验中给学生提供答案是不必的甚至是有害的。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。