论文部分内容阅读
数学思维按照思维过程中是否遵循一定的逻辑规则可划分为分析思维和直觉思维。分析思维,就是逻辑思维,它主要是以逻辑规则对事物按部就班地认识,对其过程主体有清晰的意识。在中学数学中,由于数学知识的严谨性,抽象性和系统性,常常掩盖了直觉思维的存在和作用,因而在目前教学中往往偏重于演绎推理的训练,过分强调形式论证的严密逻辑性,而忽视了直觉思维的突发性理解与顿悟作用。在新课程标准深入课堂的今天,加强学生直觉思维能力的培养是非常有必要的。本文拟从以下三个方面谈谈个人的看法。
一、数学直觉思维的涵义及其特性
数学直觉思维是人脑对教学对象,结构以及关系的敏锐的想象和迅速的判断。所谓判断就是人脑对于数学对象及其规律性关系的迅速认识、直接的理解、综合的判断,也就是数学的洞察力,有时也称为数学直觉判断。
根据数学直觉思维的涵义,它具有下列特性:(1)直接性。数学直觉思维是直接反映数学对象、结构以及关系的思维活动,这种思维活动表现为对认识对象的直接领悟或洞察,这是数学直觉思维的本质属性。(2)或然性。由于数学直觉思维是一种跳跃的思维,是在逻辑依据不充分的前提下做出判断,因而直觉思维的结果可能正确,也可能不正确,这一特性称为数学直觉思维的或然性。(3)不可解释性。由于直觉思维是在一刹那时间内完成的,许多中间环节被略去了,思维者对其过程没有清晰的意识,所以要对它的过程进行分析研究和追忆,往往是十分困难的,只有当得出结果并转换成逻辑语言时才能为别人所理解。
逻辑思维在数学中虽然据着主导的地位,但直觉思维是思维中最活跃,最积极,最具有创造性的成分。逻辑思维与直觉思维形成了辨证的互补关系。直觉思维为逻辑思维提供了动力并指引方向,而逻辑思维则对直觉思维做出检验与反馈,是直觉思维的深入和精化。
二、数学直觉思维的重要地位和作用
(一)数学直觉思维是学习数学与创造数学必不可少的思维形式
彭加勒认为:“逻辑是证明的工具,直觉是发现的工具”,“没有直觉,数学家只能按语法书写而毫无思想”。爱因斯坦说:“我相信直觉与灵感,真正可贵的因素是直觉”,“看来,直觉是头等重要的”。数学家们对直觉思维在数学研究和数学发现中的作用都给予高度评价。因此,数学直觉思维是学习数学与创造数学必不可少的思维形式。
(二)数学直觉思维有利于提高学生的思维品质,可以提高解题效率
直觉思维要求一定的依据,但又不苛求有充分的依据。这既符合学生的思维习惯,又不至于过早筛掉可能有用的信息。在数学解题中,不但要运用逻辑进行分析,而且还应在分析问题特征的同时,运用数学直觉思维判断思路,直觉解题方向,并迅速洞察问题实质,可获得事半功倍的效果。
三、数学直觉思维能力培养的途径
(一)鼓励大胆猜想,养成善于猜想的数学思维习惯
猜想是一种合情合理,属于综合程度较高的带有一定直觉性的高级认识过程,牛顿说过:“没有大胆的猜想,就做不出伟大的发现”,对于数学研究或者发现性学习来说,猜想方法是一种重要的基本思维方法。正如G.波利亚所说:“在您证明一个数学定理之前,您必须猜想这个定理证明的主导思想”。数学猜想是证明的前提,“数学事实首先是被猜想,然后是被证实”,猜想是数学发现的动力。数学理论上的重大突破,常常起源于主意深刻的猜想。比如目前的数学“王冠”上的颗颗“明珠”,就是一个个的猜想:哥德巴赫猜想、黎曼猜想、费马猜想等。
(二)鼓励标新立异培养直觉思维
有突出创造智能的人,总想突破常人思维的局限,热衷于求异思维,标新立异。在传统的中学数学教学过程中,基本上注意力放在由学生准确地再现学过的知识上面,常常对有天赋的学生的独到之见评价不高,却给死记硬背的答案以高分。而前者有时虽不能给出清晰的思维过程,但结果正确,而后者缺乏创造力。因此在教学过程中要创设宽松的研讨环境培养学生独立思考,善于思考的习惯 ,鼓励学生敢于发表自己的想法,哪怕错了也没关系,对有天赋的学生的独到之见要给予高度评价以激发他们的积极性。
(三)加强观察力的训练,培养学生洞察问题实质的能力
在平时的教学中,应结合教材内容,提供素材,让学生进行认真仔细的观察、分析、有意识地进行训练,在观察中,特别要注意培养抽象、概括、洞察问题实质的能力。
一、数学直觉思维的涵义及其特性
数学直觉思维是人脑对教学对象,结构以及关系的敏锐的想象和迅速的判断。所谓判断就是人脑对于数学对象及其规律性关系的迅速认识、直接的理解、综合的判断,也就是数学的洞察力,有时也称为数学直觉判断。
根据数学直觉思维的涵义,它具有下列特性:(1)直接性。数学直觉思维是直接反映数学对象、结构以及关系的思维活动,这种思维活动表现为对认识对象的直接领悟或洞察,这是数学直觉思维的本质属性。(2)或然性。由于数学直觉思维是一种跳跃的思维,是在逻辑依据不充分的前提下做出判断,因而直觉思维的结果可能正确,也可能不正确,这一特性称为数学直觉思维的或然性。(3)不可解释性。由于直觉思维是在一刹那时间内完成的,许多中间环节被略去了,思维者对其过程没有清晰的意识,所以要对它的过程进行分析研究和追忆,往往是十分困难的,只有当得出结果并转换成逻辑语言时才能为别人所理解。
逻辑思维在数学中虽然据着主导的地位,但直觉思维是思维中最活跃,最积极,最具有创造性的成分。逻辑思维与直觉思维形成了辨证的互补关系。直觉思维为逻辑思维提供了动力并指引方向,而逻辑思维则对直觉思维做出检验与反馈,是直觉思维的深入和精化。
二、数学直觉思维的重要地位和作用
(一)数学直觉思维是学习数学与创造数学必不可少的思维形式
彭加勒认为:“逻辑是证明的工具,直觉是发现的工具”,“没有直觉,数学家只能按语法书写而毫无思想”。爱因斯坦说:“我相信直觉与灵感,真正可贵的因素是直觉”,“看来,直觉是头等重要的”。数学家们对直觉思维在数学研究和数学发现中的作用都给予高度评价。因此,数学直觉思维是学习数学与创造数学必不可少的思维形式。
(二)数学直觉思维有利于提高学生的思维品质,可以提高解题效率
直觉思维要求一定的依据,但又不苛求有充分的依据。这既符合学生的思维习惯,又不至于过早筛掉可能有用的信息。在数学解题中,不但要运用逻辑进行分析,而且还应在分析问题特征的同时,运用数学直觉思维判断思路,直觉解题方向,并迅速洞察问题实质,可获得事半功倍的效果。
三、数学直觉思维能力培养的途径
(一)鼓励大胆猜想,养成善于猜想的数学思维习惯
猜想是一种合情合理,属于综合程度较高的带有一定直觉性的高级认识过程,牛顿说过:“没有大胆的猜想,就做不出伟大的发现”,对于数学研究或者发现性学习来说,猜想方法是一种重要的基本思维方法。正如G.波利亚所说:“在您证明一个数学定理之前,您必须猜想这个定理证明的主导思想”。数学猜想是证明的前提,“数学事实首先是被猜想,然后是被证实”,猜想是数学发现的动力。数学理论上的重大突破,常常起源于主意深刻的猜想。比如目前的数学“王冠”上的颗颗“明珠”,就是一个个的猜想:哥德巴赫猜想、黎曼猜想、费马猜想等。
(二)鼓励标新立异培养直觉思维
有突出创造智能的人,总想突破常人思维的局限,热衷于求异思维,标新立异。在传统的中学数学教学过程中,基本上注意力放在由学生准确地再现学过的知识上面,常常对有天赋的学生的独到之见评价不高,却给死记硬背的答案以高分。而前者有时虽不能给出清晰的思维过程,但结果正确,而后者缺乏创造力。因此在教学过程中要创设宽松的研讨环境培养学生独立思考,善于思考的习惯 ,鼓励学生敢于发表自己的想法,哪怕错了也没关系,对有天赋的学生的独到之见要给予高度评价以激发他们的积极性。
(三)加强观察力的训练,培养学生洞察问题实质的能力
在平时的教学中,应结合教材内容,提供素材,让学生进行认真仔细的观察、分析、有意识地进行训练,在观察中,特别要注意培养抽象、概括、洞察问题实质的能力。