论文部分内容阅读
学习兴趣是学生学习的内部动机,是推动学生探求内部真理与获取能力的一种强烈欲望,它在学习活动中起着十分重要的作用。教学实践表明,学生如果对数学知识充满好奇心,对学会知识有自信心,那么他们总是主动积极、心情愉快地进行学习。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势、把握时机、因势利导地为学生创造良好的教学情境,激发学生的兴趣,让学生在数学学习中愉快地探索。
我以小学数学第七册《三角形内角和》一课为例,谈几点体会。
一、开讲生趣
俗话说:“良好的开端是成功的一半。”一堂课的开头虽然只有短短几分钟,它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。
如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了。这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的?“探个究竟”的兴趣因此油然而生。
二、授中激趣
开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。
比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”,看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。
三、设疑引趣
学起于思,思源于疑,“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出能够引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。
比如“三角形内角和”在新授结束后:
师(出示一个大三角形):它的内角和是多少度?
生:180°。
师(出示一个很小的三角形):它的内角和是多少度?
生:180°。
师:把大三角形平均分成两份,它(指均分后的一个小三角形)的内角和是多少度?(学生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、练中有趣
练习是巩固所学知识、形成技能技巧的必要途径,是教学的一个重要环境,因此课堂练习要设计得精彩有趣。教学中教师应根据所学内容,设计不同形式的练习。
1、练习形式要注意层次性。
要设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。
比如“三角形内角和”中在运用规律解题时,先是已知两角求第三角;再是已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最是后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起了学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。
2、练习形式要注意科学性和趣味性。
布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变“知之”为“乐知”。
比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想,这时教师说出“画不出来”的理由,学生们恍然大悟。
五、课尾留趣
一节课的前半节,是学生接受知识的最佳时刻,但一到后半节,学生注意力容易分散,这时设计一些有趣的数学活动、游戏,不仅可以使大脑得到适当休息,又能吸引学生的注意力,达到“课业结束趣犹在”的效果。
我以小学数学第七册《三角形内角和》一课为例,谈几点体会。
一、开讲生趣
俗话说:“良好的开端是成功的一半。”一堂课的开头虽然只有短短几分钟,它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。
如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了。这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的?“探个究竟”的兴趣因此油然而生。
二、授中激趣
开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。
比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”,看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。
三、设疑引趣
学起于思,思源于疑,“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出能够引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。
比如“三角形内角和”在新授结束后:
师(出示一个大三角形):它的内角和是多少度?
生:180°。
师(出示一个很小的三角形):它的内角和是多少度?
生:180°。
师:把大三角形平均分成两份,它(指均分后的一个小三角形)的内角和是多少度?(学生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、练中有趣
练习是巩固所学知识、形成技能技巧的必要途径,是教学的一个重要环境,因此课堂练习要设计得精彩有趣。教学中教师应根据所学内容,设计不同形式的练习。
1、练习形式要注意层次性。
要设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。
比如“三角形内角和”中在运用规律解题时,先是已知两角求第三角;再是已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最是后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起了学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。
2、练习形式要注意科学性和趣味性。
布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变“知之”为“乐知”。
比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想,这时教师说出“画不出来”的理由,学生们恍然大悟。
五、课尾留趣
一节课的前半节,是学生接受知识的最佳时刻,但一到后半节,学生注意力容易分散,这时设计一些有趣的数学活动、游戏,不仅可以使大脑得到适当休息,又能吸引学生的注意力,达到“课业结束趣犹在”的效果。